DIVISIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN

PROCESAMIENTO DE IMÁGENES DE PLANTAS ORNAMENTALES MULTI-ESCALA PARA CALCULAR SU CRECIMIENTO

TESIS

QUE PARA OBTENER EL GRADO DE MAESTRO EN SISTEMAS COMPUTACIONALES

PRESENTA

CARLOS ALBERTO CÁSARES FARÍAS

DIRECTOR DE TESIS

D. EN C. NICANDRO FARÍAS MENDOZA

CODIRECTOR DE TESIS

DR. NOEL GARCÍA DÍAZ

VILLA DE ÁLVAREZ, COL, MÉXICO, NOVIEMBRE DE 2017.
C. CARLOS ALBERTO CASARES FARIAS
PASANTE DE LA MAESTRÍA EN SISTEMAS COMPUTACIONALES PRESENTE.

La División de Estudios de Posgrado e Investigación de acuerdo al procedimiento para la obtención del Título de Maestría de los Institutos Tecnológicos y habiendo cumplido con todas las indicaciones que la comisión revisora hizo a su trabajo profesional denominado: **PROCESAMIENTO DE IMÁGENES DE PLANTAS ORNAMENTALES MULTI-ESCALA PARA CALCULAR SU CRECIMIENTO**, por la opción de Tesis, que para obtener el grado de Maestro en Sistemas Computacionales será presentado por Usted, tiene a bien concederle la autorización de impresión de la tesis citada.

Sin otro particular por el momento, aprovecho la ocasión para enviarle un cordial y afectuoso saludo.

**ATENTAMENTE**

"Estudiar para prever y prever para actuar"

SECRETARÍA DE EDUCACIÓN PÚBLICA
INSTITUTO TECNOLÓGICO DE COLIMA
DIRECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN

MTRA. RAMONA EVELIA CHÁVEZ VALDES
JEFA DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN

C.p.p. Isabel Sáenz Rodríguez, Jefa del Dpto. Servicios Escolares
Nicandro Farias Mendoza, Coord. Maestría en Sistemas Computacionales
Archivo

RECHV/*cas
Al empastar

Agregar oficio de autorización de impresión Aquí
EPÍGRAFE

Extiendo un cordial agradecimiento a mis compañeros de generación, profesores y asesores que han hecho posible con su apoyo la elaboración de este trabajo. Y dedico el mismo, a mi esposa e hijos, familia y seres queridos, quienes me han brindado el sustento emocional para concluirlo con éxito.
# Índice

Resumen ................................................................................................................................. 1
Abstract ................................................................................................................................. 1

Capítulo I.- Introducción ....................................................................................................... 2
  1.1. La Naturaleza del Problema ......................................................................................... 2
  1.2. El Contexto del Problema ........................................................................................... 2
  1.3. Revisión de la Literatura ............................................................................................. 3
  1.4. Planteamiento del Problema a Investigar .................................................................... 4
  1.5. Propuesta de Solución ................................................................................................. 6
  1.6. Justificación del Estudio .............................................................................................. 9
  1.7. Motivación del Estudio ............................................................................................... 10
  1.8. Objetivo General ........................................................................................................ 10
  1.9. Objetivos Particulares ............................................................................................... 11
  1.10. Hipótesis .................................................................................................................. 11
  1.11. Descripción de los Métodos Empleados ................................................................... 11
  1.12. Organización de la Tesis .......................................................................................... 12

Capítulo II - Estado del Campo del Conocimiento ............................................................... 13
  2.1. Marco Histórico ......................................................................................................... 13
  2.2. Marco Contextual ...................................................................................................... 17
  2.3. Marco Teórico .......................................................................................................... 19

Capítulo III - Métodos Empleados ......................................................................................... 27
  3.1. Metodología de Proceso Unificado Ágil ...................................................................... 28
  3.2. Modelo ..................................................................................................................... 29

Capítulo IV - Desarrollo de la investigación ......................................................................... 33
  4.1. Análisis ....................................................................................................................... 33
    4.1.1. Modelo Conceptual (Big Picture) ......................................................................... 33
    4.1.2. Diagramas de Actividades con Responsabilidades ........................................... 34
    4.1.3. Modelo de Casos de Uso ..................................................................................... 38
    4.1.4. Modelo de Requisitos ......................................................................................... 40
  4.2. Diseño ......................................................................................................................... 42
División de Estudios de Posgrado e Investigación
Procesamiento de Imágenes de Plantas Ornamentales Multi-Escala para Calcular su Crecimiento

4.2.1. Modelo de Clases ........................................... 42
4.2.2. Modelo de Datos ............................................ 43
4.2.3. Diccionario de Datos ....................................... 44
4.2.4. Modelo de Interfaces .................................... 48
4.2.6. Modelo de Componentes ................................... 51
4.2.7. Modelo de Despliegue .................................... 52
4.3. Implementación ................................................... 53
  4.3.1. Instalación del Lenguaje de Programación Python .......... 53
  4.3.2. Instalación de la Librería OpenCV ...................... 53
  4.3.3. Desarrollo de la Aplicación ............................ 54
4.4. Verificación y Validación ...................................... 58
  4.4.1. Plan de Pruebas ........................................... 58
    4.4.1.1. Pruebas de Operación para Aplicación de Estimación del Crecimiento .............................. 58
    4.4.1.2. Pruebas de Operación para Limpieza de Imagen Modelo en Formato .png Fondo Transparente ................. 58
    4.4.1.3. Prueba de Usabilidad para la Ejecución Aplicación por Etapas Multi-Escala con Visualización ................. 59
  4.4.2. Plan de Mantenimiento ................................... 59
Capítulo V - Resultados Obtenidos .................................. 60
  5.1. Ejecución del Algoritmo de Igualación por Reducción Multi-Escala ........................................ 60
  5.2. Presentación de Resultados .................................. 62
  5.3. Obtención de Porcentaje de Crecimiento ..................... 64
Capítulo VI - Conclusiones y Recomendaciones ...................... 65
Referencias Bibliográficas .......................................... 67
Índice de Tablas

Tabla 3.1. Procedimiento para el Desarrollo de la Investigación................. 30
Tabla 4.1. Tabla con información del personal (personal)............................... 44
Tabla 4.2. Tabla con información de Índices (personal)................................. 45
Tabla 4.3. Tabla con información de la Bitácora de Crecimiento
               (tb_bitacoracrecimiento).................................................. 45
Tabla 4.4. Tabla con información de Índices (tb_bitacoracrecimiento).............. 46
Tabla 4.5. Tabla con información del Catálogo de Plantas
               (tb_catalogogeneralplantas)................................................. 46
Tabla 4.6. Tabla con información de Índices (tb_catalogogeneralplantas)......... 46
Tabla 5.1. Concentración de Valores de los Tres Canales RGB para la Imagen
               Modelo............................................................................. 60
Tabla 5.2. Valores obtenidos del algoritmo de igualación por reducción de Multi-
               Escala............................................................................... 63
Tabla 5.3. Simetría en los valores procesados en el algoritmo de igualación por
               reducción de Multi-Escala.......................................................... 63
Tabla 5.4. Igualación de la Concentración de Valores de los Tres Canales RGB
               para las Imágenes Modelo – Original.......................................... 64
Tabla 5.5. Evaluación de otras capturas con algoritmo de igualación con la
               concentración de Valores de los tres canales RGB para las imágenes
               modelo – original en varias dimensiones........................................ 64
## Índice de Figuras

<table>
<thead>
<tr>
<th>Figura</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 1.1</td>
<td>Propuesta de Solución (BigPicture)</td>
<td>8</td>
</tr>
<tr>
<td>Figura 2.1</td>
<td>Optim, Procesamiento de imágenes para el conteo de cultivos</td>
<td>19</td>
</tr>
<tr>
<td>Figura 2.2</td>
<td>Se ilustra un ejemplo sencillo de detección de bordes. Existen dos objetos superpuestos en la imagen original: (a), que tiene un color gris uniforme fondo; y (b), la versión de bordes mejorada de la misma imagen tiene líneas oscuras que describen los tres objetos.</td>
<td>20</td>
</tr>
<tr>
<td>Figura 2.3</td>
<td>Imagen con ruido. (a) Un borde de paso sometido a una distribución normal de ruido (Gauss), (b) Con una desviación estándar de 10, (c) La desviación estándar es de 20. Note que el borde está perdiendo ruido en el azar.</td>
<td>22</td>
</tr>
<tr>
<td>Figura 2.4</td>
<td>Estructura básica de OpenCV</td>
<td>23</td>
</tr>
<tr>
<td>Figura 2.5</td>
<td>Matriz que contiene información de una imagen (Intensidad en el rango de 0 a 255)</td>
<td>24</td>
</tr>
<tr>
<td>Figura 2.6</td>
<td>Representación de los contenedores “bins” con subpartes de píxeles agrupados</td>
<td>24</td>
</tr>
<tr>
<td>Figura 2.7</td>
<td>Representación de octavas de la imagen en pirámide gaussiana</td>
<td>25</td>
</tr>
<tr>
<td>Figura 3.1</td>
<td>Ciclo de Vida de la Metodología PUA</td>
<td>28</td>
</tr>
<tr>
<td>Figura 3.2</td>
<td>Versiones Incrementales en el Tiempo</td>
<td>33</td>
</tr>
<tr>
<td>Figura 4.1</td>
<td>Procesamiento de Imágenes de Plantas Ornamentales Multi-Escala para Calcular su Crecimiento</td>
<td>34</td>
</tr>
<tr>
<td>Figura 4.2</td>
<td>Diagrama de Actividad con Responsabilidad para Estimación del Crecimiento</td>
<td>35</td>
</tr>
<tr>
<td>Figura 4.3</td>
<td>Diagrama de Actividad con Responsabilidad Procesamiento de Imágenes</td>
<td>37</td>
</tr>
<tr>
<td>Figura 4.4</td>
<td>Los Casos de Uso que Integran el Trabajo</td>
<td>38</td>
</tr>
<tr>
<td>Figura 4.5</td>
<td>Modelo de Caso de Uso (Organización General)</td>
<td>39</td>
</tr>
</tbody>
</table>
Figura 4.6. Caso de uso del Procesamiento de Imágenes de Plantas Ornamentales Multi-Escala para Calcular su Crecimiento

Figura 4.7. Requisitos Funcionales del Sistema

Figura 4.8. Requisitos No Funcionales del Sistema

Figura 4.9. Modelo de Clases

Figura 4.10. Modelo de datos (Diagrama Entidad-Relación)

Figura 4.11. Interfaces de usuario para el uso del sistema

Figura 4.12. Interfaz web de usuario para el uso del sistema

Figura 4.13. Interfaz de ayuda para el uso del sistema

Figura 4.14. Estructura Física del Modelo de Componentes

Figura 4.15. Modelo de Despliegue

Figura 4.16. Diagrama de Flujo para la Medición del Crecimiento de Plantas Ornamentales

Figura 4.17. Limpieza de Fondo para Imagen Modelo

Figura 5.1. Base Template(Modelo) 200x200px

Figura 5.2. Reducciones y Muestra Gráfica de las Visualizaciones a Multi-Escala del Proceso de Matching

Figura 5.3. Obtención de la Igualación

Figura 5.4. Datos de las Dimensiones en Reducción de Imagen a Escala
Índice de Cuadros

Cuadro1. Código Fuente con Implementación del Algoritmo de Cálculo de Crecimiento en Multi-Escala…………………………………………………… 55
### Abreviaturas y Símbolos

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Agricultura de Precisión.</td>
</tr>
<tr>
<td>OpenCV</td>
<td>Open Source Computer Vision Library o Biblioteca de Visión Artificial Libre.</td>
</tr>
<tr>
<td>PHP</td>
<td>Lenguaje de Programación para Crear Página Personal o Personal Home Page.</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle Swarm Optimización o Algoritmo de Enjambre de Partículas.</td>
</tr>
<tr>
<td>RGB</td>
<td>Composición del Color en Términos de la Intensidad de los Colores (Red-Green-Blue) Primarios de la Luz Rojo-Verde-Azul.</td>
</tr>
<tr>
<td>SIFT</td>
<td>Scale-Invariant Feature Transform o Algoritmo de Detección de Características Invariante tanto a Rotaciones como al Escalado de las Imágenes.</td>
</tr>
<tr>
<td>SURF</td>
<td>Speeded-Up Robust Features o Algoritmo de Plano Acelerado con Características Robustas.</td>
</tr>
</tbody>
</table>
Resumen

La agricultura de precisión (AP), ha sido aplicada por los agricultores representando una herramienta de apoyo para aumentar la productividad en viveros de plantas ornamentales. En este artículo se desarrolló un algoritmo para calcular el crecimiento de plantas ornamentales, formulando una solución innovadora en el ámbito de agricultura de precisión, procesando imágenes de las plantas ornamentales escalando sus dimensiones para calcular su crecimiento. En la implementación de este trabajo se utilizaron tecnologías emergentes, como el algoritmo de reducción por multi-escala para procesar imágenes, el lenguaje de programación Python y la biblioteca de visión artificial OpenCV, se aplicó el algoritmo multi-escala a muestras gráficas con diferentes proporciones de la misma imagen obteniendo cálculos del crecimiento de las plantas. Con base a los resultados obtenidos consideramos que el algoritmo desarrollado puede extenderse a otras áreas del conocimiento.

Abstract

Precision agriculture (PA) has been applied by the farmers representing a support tool to increase productivity in ornamental plant nurseries. In this paper was developed an algorithm to calculate the growth of ornamental plants, formulating an innovative solution in the field of precision agriculture, processing images of ornamental plants scaling the dimensions to calculate their growth. The implementation of this work, emergent technologies were used, like the algorithm a reduction by multi-scale to process images, the programming language Python and the library of artificial vision OpenCV, the multi-scale algorithm was applied to graphic samples with different proportions of the same image getting calculations of plant growth. Based on the results obtained, we consider that the developed algorithm can be extended to other areas of knowledge.
1. Introducción

1.1. La Naturaleza del Problema

La agricultura de precisión ha sido aplicada por los agricultores desde los primeros tiempos de la agricultura. Los agricultores de subsistencia trabajaron en pequeñas parcelas de tierra, las características de las cuales servían bien. Se dividieron sus tierras en áreas más pequeñas para producir cultivos donde las condiciones eran más adecuadas. Para los agricultores una precisión suficiente fue garantizar los alimentos para subsistencia de la familia (Oliver, 2010).

La productividad de un cultivo en términos biológicos comienza a definirse desde el inicio del ciclo de producción comercial y es afectada por una multiplicidad de factores, algunos de ellos propios del genotipo, otros del ambiente y otros de las condiciones de manejo (Di Benedetto & Tognetti, 2016).

El actualmente denominado "análisis clásico" es un análisis a nivel de una planta aislada, que en su forma más simple, permite estimar la medida de fijación de carbono por unidad de área foliar y la proporción del carbono disponible que se emplea en la producción, los cuales contribuyen a la acumulación de biomasa de la planta entera. Este tipo de análisis es particularmente apropiado para plantas que se encuentran en una fase exponencial de crecimiento, por esta razón es muy usado en estudios ecológicos en los que se evalúa la competencia temprana entre plantas (Di Benedetto & Tognetti, 2016).

1.2. El Contexto del Problema

La empresa Ornamentales de Colima (ORNACOL) es la comercializadora del COEPPPLANTS. Se encuentra ubicada en el municipio de Coquimatlán, Colima, México y nace en el año 2009 por la necesidad de dar al cliente una solución integral a sus necesidades, ofreciendo un centro de acopio y comercialización de más de 150 variedades de plantas de ornato en sus diferentes presentaciones, así mismo invita a los productores a ser más eficientes en sus costos de producción.
Su visión consiste en brindar satisfacción a sus clientes con la variedad y el volumen de productos que se mantengan al nivel de los estándares de calidad certificados en los mercados nacionales e internacionales, con el uso de tecnologías de vanguardia que fomenten el desarrollo de innovadoras soluciones integrales de producción y comercialización generando valor a todos los participantes.

Para las actuales técnicas de producción se estiman costos elevados y manejo de fuertes recursos económicos y humanos que mitigan las ganancias. Otros factores que impactan la recuperación de inversiones es el desarrollo de tareas repetitivas de limpieza de espacios, la compra de insumos, el uso de personal para monitoreo de parámetros físicos durante el cultivo de brotes de enraizamiento en túneles y carriles, la contingencia de plagas que afectan los cultivos, el medio ambiente, entre otros.

1.3. Revisión de la Literatura

El presente trabajo de investigación está soportado por los siguientes estudios relacionados publicados previamente.

En el trabajo de investigación desarrollado por (Narumol Chumuang, 2016) se propuso el algoritmo de segmentación de imagen para clasificar sus elementos y calcular la superficie de la hoja con una técnica de segmentación de umbral para separar la superficie buena de la imagen de la hoja, utilizando un umbral constante en el modelo de color gris y calcular el grado de color verde en los modelos de valores de saturación de matices (HSV). Esta investigación está enfocada en la simulación de la estimación del área foliar con análisis de regresión lineal por pixel en la superficie de la hoja.

En (Lou Wei, 2010) se desarrolló un algoritmo para la estimación del crecimiento del tomate denominado algoritmo de optimización de enjambre de partículas (PSO) el cual representa una solución estocástica global que ha demostrado ser un buen método de optimización. Este algoritmo da seguimiento a operadores de búsqueda de acuerdo con su propia velocidad, la
longitud del tomate de la etapa reproductiva, controles por el genotipo de las características de las especies y factores ambientales en el proceso de desarrollo del tomate como la temperatura y la luz. Con el fin de validar los parámetros se llevó a cabo un estudio simulado para la estimación que hace uso del modelo no lineal del algoritmo PSO, cuyo objetivo es determinar los parámetros del modelo de crecimiento y desarrollo del tomate, observando que los valores reales del modelo tienen un mayor grado de adaptación. El experimento fue implementado en invernaderos cuya temperatura y longitud de día pueden ser controlados para obtener los valores medidos reales y para estimar los parámetros del modelo utilizando PSO.

Finalmente, en el trabajo desarrollado por (Padrón-Pereira, 2013) se obtuvieron métodos para estimar la medida del cambio de diámetro en un fruto siendo de gran interés la investigación fisiológica de un árbol integral o de un solo fruto, ya que puede esto proporciona información útil para el manejo del huerto o cultivo. Se planteó que el uso de imágenes digitales y software con capacidad de medición permite elaborar curvas de crecimiento para el estudio de patrones en frutos de mandarina. Utilizar imágenes digitales para medir el diámetro ecuatorial en frutos de mandarina durante el crecimiento con la finalidad de aportar un procedimiento alternativo para el estudio de patrones de crecimiento.

1.4. Planteamiento del Problema a Investigar

Observando los resultados obtenidos en las investigaciones previas se identifican limitaciones en el alcance, en los métodos y tecnologías empleadas.

Nos encontramos ante estudios científicos especializados que atacan las problemáticas del cultivo de plantas ornamentales en el campo haciendo uso de avances tecnológicos relevantes en mecatrónica, procesamiento de imágenes, programación, trazabilidad de las plantas, entre otros. Se evaluaron los descubrimientos y se observan las siguientes áreas de oportunidad.
Limitaciones observadas en la literatura consisten en el alcance acotado al registro de imágenes a manera de repositorio careciendo de procesamiento para identificar patrones en las imágenes. Así mismo se observaron métodos que se limitan a la detección de grupos de pixeles sin lograr precisar los contornos de las imágenes. Otras investigaciones únicamente están enfocadas en aplicar técnicas de simulación estadística.

Es de suma relevancia y gran interés modernizar los procesos con integración de herramientas tecnologías innovadoras y aplicaciones a la medida que optimicen la producción de plantas ornamentales logrando administrar los recursos económicos y los insumos, con los que cuentan los viveristas.

La reducción de tiempo de muestreo de parámetros físicos para confirmar el desarrollo productivo de las plantas ornamentales es un punto relevante en este trabajo de investigación.

Nos encontramos ante estudios científicos especializados que atacan las problemáticas del cultivo de plantas ornamentales en el campo haciendo uso de avances tecnológicos relevantes en mecatrónica, procesamiento de imágenes, programación, trazabilidad de las plantas, entre otros. Se evaluaron los descubrimientos y se observan las siguientes áreas de oportunidad.

Con Aerea Technology International (ATI) agBot ™. El campo de oportunidad se detecta en el módulo de procesamiento de imágenes, actualmente no ejecutan algún proceso posterior, salvo capturar video y fotos. No aplica agroquímicos, ni cuenta recipiente para ello. El costo es algo que queda los deja fuera de alcance para un agricultor promedio, pues su valor ronda los 9,500.00 USD hasta los 17,000.00 USD (International, 2010). OPTiM AGRI DRONE. Aún no se cuenta con una ficha técnica del UAV ni su valor de mercado. El campo de oportunidad se detecta en el módulo de procesamiento de imágenes, actualmente efectúa el reconocimiento de patrones y plagas en el follaje de las plantas, pero no se cuenta con la funcionalidad que permita llevar a cabo el análisis el crecimiento del producto. Su tamaño es reducido y aparenta ligereza. No transporta una cantidad importante de agroquímicos. (SAGA University, 2015)
El “Agras MG-1” de la empresa DJI. El área de oportunidad se encuentra en el hecho que no cuenta con una video cámara para captura de imágenes o video que permita hacer la detección de plagas en el follaje de los cultivos, su costo aún no es publicado, pues es un desarrollo que cumple con las necesidades del sector agrícola y es diseñado de manera personalizada, lo cual hace variable su valor. Se considera que, por la tecnología implementada, el número de motores y sus grandes dimensiones su costo es elevado. Es posible hacer modificaciones para integrar una cámara video. (DJI, DJI - The Future of Possible, 2006).

La publicación titulada “Accelerating the construction of BRIEF descriptors using an FPGA-based architecture”. Ofrece un área de oportunidad, al solo especializarse en detección de objetos genéricos y siluetas.

1.5. Propuesta de Solución

Con base a los estudios previos y a las áreas de oportunidad detectadas se propone el presente trabajo de investigación que desarrolla un método para el análisis de histograma de colores con el objetivo de conocer la composición de pixeles de colores de la imagen y procesar las imágenes multi-escala para obtener una mayor precisión en el cómputo del crecimiento de las plantas. Todo ello logrado por modificaciones realizadas en el algoritmo para el cálculo del crecimiento de las plantas ornamentales se usó como base el algoritmo de detección de bordes (Mordvintsev, A. & K. Abid, 2013). Debido a que ninguno de estos estudios propone enfoques en la reducción de tiempo de muestreo de parámetros físicos para confirmar el desarrollo productivo de las plantas ornamentales, punto relevante en este trabajo de investigación.

Se propone la creación de un sistema que haga uso de tecnologías en programación y bibliotecas de software de aprendizaje de máquina para analizar imágenes de plantas ornamentales y definir un algoritmo que calcule su crecimiento analizando los histogramas de colores de reducciones multi-escala de imágenes de muestreo.
La arquitectura desarrollada hace uso de tecnologías de información e implementa los módulos funcionales de:

• Captura de imágenes de plantas ornamentales para su procesamiento con un algoritmo de reducción a multi-escalas.
• Almacenamiento de información para alimentar un catálogo de plantas ornamentales.
• Simplificar el proceso productivo, con un método ágil de observación del crecimiento de las plantas ornamentales.

El proceso se describe gráficamente en la (fig. 1.1). Este inicia con el ciclo de diseño y desarrollo del trabajo, siendo necesario poner énfasis en las siguientes fases:

• El análisis de los requerimientos del sistema.
• El desarrollo de los algoritmos, métodos y técnicas que serán la base para las interfaces.
• La implementación de la aplicación gráfica que realice el procesamiento de imágenes de plantas ornamentales multi-escala para la estimación del crecimiento. Haciendo uso de la biblioteca de visión artificial OpenCV y el lenguaje de programación Python se hace la construcción del mecanismo que compara imágenes empatándolas buscando tener una igualación de los bordes de las imágenes para detectar cambios.
• El desarrollo de pruebas.
• La implantación del sistema.
El impacto de la solución será inmediato y el grado de innovación que involucra su arquitectura puede optimizar los recursos significativamente. Se tiene un alto grado de autonomía contando con intervenciones de personal operativo para las funciones como:

- **Administrador.** Este agente tendrá las capacidades para controlar la aplicación para el procesamiento de las imágenes capturadas, hacer la descarga de los archivos en un equipo local y realizar la ejecución del algoritmo para Calcular el Crecimiento de las Plantas Ornamentales. En general puede llevar el seguimiento y es considerado el súper usuario del sistema.

- **Supervisor.** Este agente tiene la capacidad de conocer las distintas variedades de plantas ornamentales.
Toda la información recopilada será analizada en esta etapa, y descargada a una base de datos con el objetivo de obtener bitácoras y alimentar el catálogo de imágenes en bruto de las plantas ornamentales para calcular su crecimiento.

El grupo de datos serán de utilidad para la toma de decisiones, por tal motivo se integra en la interfaz un vínculo con otros sistemas que buscan llevar la trazabilidad de ciclo de producción y venta de plantas ornamentales.

1.6. Justificación del Estudio

La producción de cultivos de plantas ornamentales requiere de cuidados exigentes para garantizar que termine su ciclo de crecimiento, monitoreando constantemente los parámetros físicos desde que nace una planta hasta su madurez. Por ello, es necesario surtirle de nutrientes; y controlar agentes externos que interrumpen y logran retrasar la producción como lo pueden ser otros organismos vivos (plagas), factores ambientales, entre otros.

En la actualidad existen desarrollos de software que procesan imágenes en tiempo real, algunos de ellos son montados en vehículos aéreos no tripulados (UAV), pero ninguno cuenta con la innovación de procesar las imágenes para determinar el crecimiento de las plantas.

Las técnicas tradicionales de producción de los viveros regionales implican en su mayor parte el recurso humano, quien es sobrepasado en el desarrollo de actividades, tal como se observó en las siguientes situaciones:

- Se requiere un gran número de personal y tiempo, para contabilizar la producción y mantener una buena administración del inventario de plantas ornamentales.
- Se requieren de amplias jornadas de supervisión y monitoreo de la producción por medio del muestreo de parámetros físicos como: salinidad, conductividad, pH y humedad. Siendo el análisis de estos parámetros, el adecuado uso de insumos y el juicio experto, los mecanismos que determinan el óptimo crecimiento de las plantas.
1.7. Motivación del Estudio

Actualmente las sociedades han innovado con el desarrollo de tecnologías de información que permiten dar apoyo a las sociedades en las tareas del día a día. Con esta apertura, es necesario dar inicio a la implementación de todas estas herramientas en los sectores productivos.

Hoy en día contamos con tecnologías como el lenguaje de programación Python, librerías OpenCV para el procesamiento de imágenes digitales. Dando un giro, a los métodos poco eficientes de producción que reducen la competitividad de la organización. La relevancia de la oportuna detección de patrones inusuales en los follajes de plantas ornamentales con el sistema de algoritmos complejos de procesamiento de imágenes genera una producción más eficiente que optimiza los recursos humanos y económicos de los productores.

En la región y a nivel nacional el manejo de las plagas en los cultivos responde a la usanza de antiguas técnicas, lo que vuelve a esta práctica no segura y con altos niveles de riesgo de salud por malos manejos de sustancias. Al apegarse a las normativas nacionales e internacionales se logra integrar un sistema automatizado controlado para la aplicación de agroquímicos en las plantas ornamentales.

Las aportaciones que este trabajo entregan al campo del conocimiento se ven plasmados en la creación de herramientas tecnológicas que ayudan a la determinación del crecimiento en los cultivos de plantas ornamentales, que da soporte a la toma de decisiones que promueven la productividad y competitividad de los productores de plantas ornamentales.

1.8. Objetivo General

Desarrollar un sistema que capture y procese imágenes digitales capturadas manualmente para identificar patrones que nos permitan calcular el crecimiento de plantas ornamentales en viveros.
1.9. **Objetivos Particulares**

- Análisis de factibilidad del sistema.
- Documentar el uso de herramientas de procesamiento de imágenes OpenCV.
- Estimar el crecimiento de las plantas ornamentales.
- Describir las características de los formatos y resolución de las imágenes de las plantas.
- Crear la base de datos de imágenes de plantas.
- Desarrollar el algoritmo para calcular el crecimiento de las plantas.
- Implementar la interfaz gráfica que muestre los resultados a los usuarios del sistema.
- Realizar pruebas.
- Liberación del sistema (Documentación, Capacitación).
- Implantación del sistema.

1.10. **Hipótesis**

El desarrollo de sistemas de procesamiento de imágenes capturadas para calcular el crecimiento de plantas ornamentales promueve la productividad y competitividad de los viveristas.

1.11. **Descripción de los Métodos Empleados**

La investigación documental necesaria fue ampliamente estudiada sobre temas de investigaciones relacionados a técnicas, métodos y herramientas tecnológicas usadas en invernaderos y en la digitalización de imágenes encontrando trabajos muy significativos con amplia similitud sobre los objetivos de esta investigación, detectando áreas de oportunidad que nadie ha considerado, con el desarrollo de un método para calcular el crecimiento de las plantas ornamentales.

Basándose dichos métodos de cálculo en el procesamiento de imágenes con ayuda de herramientas de programación innovadoras que permiten el análisis de imágenes y sus elementos como: el espectro de color, la reducción de bordes, la eliminación del ruido, el contraste y métodos de reducción de imágenes. La manipulación de algoritmos eficaces
incorporados en la biblioteca de software de aprendizaje de máquina OpenCV como: el análisis de Histogramas, la Transformación de Escala de Funciones Invariantes (SIFT) y las Funciones Sólidas Aceleradas (SURF).

1.12. Organización de la Tesis

La memoria de tesis se presenta organizada en capítulos que siguen la estructura que a continuación se describe:

**Primer capítulo:** Introducción, donde se analiza la naturaleza y el contexto del problema, se muestra una revisión a la literatura con lo que se le da mayor soporte a la investigación, posteriormente se propone una solución al problema y se describe la manera cómo se desarrollara esta solución, se plantea una hipótesis y los objetivos de la tesis, así como la justificación y motivación de las propuestas y planteamientos realizados, tal y como se ha expuesto en las secciones precedentes.

**Segundo capítulo:** Estado del campo del conocimiento, donde se realiza una revisión histórica sobre la agricultura de precisión y los intentos por conocer el desarrollo eficiente de los cultivos por medio de herramientas tecnológicas y estadísticas; así como las diferentes propuestas existentes en la literatura científica, las tendencias actuales de agricultura de precisión y los métodos de procesamiento de imágenes digitales. También se describen los conceptos y tecnologías existentes relacionados con esta investigación, proporcionando así los argumentos y la base teórica de esta investigación.

**Tercer capítulo:** Métodos empleados, donde se describen, desde un punto de vista teórico, los elementos y métodos necesarios para el diseño y la implementación del sistema de procesamiento de imágenes de plantas ornamentales y elaboración del Algoritmo para Calcular el Crecimiento por Reducción a Multi-Escala. Esto servirá como introducción a los sucesivos capítulos donde se abordan detalladamente las nuevas propuestas.
Cuarto capítulo: Desarrollo, en este capítulo se desglosa detalladamente la descripción de los módulos del sistema de procesamiento de imágenes, el diseño del esquema funcional del algoritmo para Estimar el Crecimiento, la formación del catálogo de plantas, la integración de los componentes necesarios para la operación de la aplicación y la presentación de la interfaz de usuario.

Quinto capítulo: Análisis de resultados, se realiza la presentación de los resultados obtenidos por el desarrollo del sistema creado y se analizan los alcances registrados logrando reconocer los distintos valores de efectividad del método presentado para Calcular el Crecimiento de las plantas ornamentales por Reducción a Multi-Escalas.

Sexto capítulo: Conclusiones, donde se exponen las líneas generales seguidas, realizando un balance general del trabajo. Asimismo, se plantean las líneas de investigación futuras, así como posibles mejoras o extensiones de los métodos.

2. Estado del Campo del Conocimiento

2.1. Marco Histórico

Lo que ahora consideramos como geoestadística se aplica a un conjunto específico de modelos y técnicas desarrollado en gran medida por Matheron (1963) en la década de 1960 para evaluar la recuperación de las reservas para la industria minera. Muchas de las ideas habían surgido anteriormente en otros campos; de hecho, tienen una larga historia que se remonta a los trabajos de Mercer y Hall (1911) en la Estación Experimental de Rothamsted (Rothamsted Research ahora). Examinaron la variación en los rendimientos de los cultivos en numerosos pequeñas parcelas en los campos históricos de Rothamsted, Harpenden, Inglaterra. Ellos estaban interesados en el tamaño óptimo de parcela para experimentos sobre rendimientos de los cultivos.
Como consecuencia de la cantidad creciente de datos desde el campo agrícola de ensayos de Rothamsted había una necesidad de más conocimientos estadísticos, y R. A. Fisher fue empleado en 1919 para desarrollar métodos de análisis adecuados. Estaba interesado en el diseño de experimentos y su objetivo era ser capaz de estimar las respuestas del rendimiento de los cultivos a diferentes tratamientos agronómicos y variedades.

Dos agrónomos Youden y Mehlich (1937) adaptaron el análisis de varianza para Fisher (Fisher 1925) para estimar la varianza asociada a diferentes distancias de la muestra. Su objetivo era planear un nuevo muestreo basado en este conocimiento para evitar el desperdicio-esfuerzo.

La obra de Gilbert y Lawes y sus sucesores de Rothamsted fue también de la agricultura de precisión; querían para evaluar los beneficios de las diferentes combinaciones y cantidades de nutrientes de los cultivos y de variedades de cultivos. El objetivo era explícitamente para aumentar los rendimientos; fertilizantes baratos podía lograrlo y la preocupación por su impacto sobre el medio ambiente no eran un problema en el tiempo. Hasta la década de 1980 una gestión precisa o sitio-específica fue a nivel de finca y la unidad de gestión fue el campo. Se tomaron muestras del suelo de un campo para determinar el valor medio de los nutrientes de los cultivos y pH, y se modifica de manera uniforme sobre el campo. El rendimiento del cultivo se basa en el peso total tomada del campo.

El término agricultura de precisión haber sido utilizado por primera vez en 1990. Antes de esto, los términos eran "el manejo del cultivo de sitio específico" o "sitio-específico".

El concepto de la moderna agricultura de precisión ha sido impulsado hacia adelante y se sustenta en los cambios tecnológicos sobre la base de la información tecnología (Schueller 1997). Esto permitió a la gestión local más precisa, en consecuencia, la unidad de gestión se ha convertido en el campo y la variación dentro de esa unidad se ha convertido en el foco. Esto refleja un cambio en la escala de operación desde la granja hasta el campo, pero no es más que esto. Con el aumento en el tamaño de la maquinaria que se utiliza en la agricultura
en los países desarrollados, los agricultores retirados límites de los campos y campos combinados en unidades cada vez más grandes. Los campos originales, que probablemente había sido creado por un conjunto particular de suelo o paisaje condiciones, estaban ahora se añadieron partes de los campos más grandes y su variación inherente juntos. El aumento de tamaño del campo fue acompañado, por lo tanto, por un aumento de variabilidad dentro del campo.

El Consejo Nacional de Investigación (1997, p. 17) dio una definición clara de Agricultura de Precisión (AP) de la siguiente manera: "La agricultura de precisión es una estrategia de gestión que utiliza tecnologías de la información para traer datos de múltiples fuentes para influir en las decisiones asociadas con la producción de cultivos". Se sugirió que la AP tiene tres componentes: la obtención de datos en una escala apropiada, interpretación y análisis de los datos, y la aplicación de una respuesta de la administración a una escala y el tiempo apropiados. La intensidad y la resolución de la información espacial implicada en AP significan que la revolución de AP es moderna esencialmente un cambio en la escala de operación y gestión. La habilidad para determinar la variación dentro del campo y para gestionarlo son centrales. Los datos utilizados en el AP son a menudo a una resolución espacial grande, por ejemplo, rendimiento, los datos de sensor proximal, de forma remota detectada datos, modelos digitales de elevación y así sucesivamente. Un obstáculo importante para la extensión más amplia y la adopción de AP es la escasez de suelo y la información sobre el cultivo, aunque ha habido ejemplos de medición en el lugar de ir de pH (Viscarra Rossel y McBratney 1997).

Las tendencias en los medios de producción arraigados desde la llamada “Revolución Verde en México” a partir del año de 1960 permitieron generar cultivos a nivel de suelo enterrados o en masetas de manera sustentable.

Con ello vinieron los mecanismos aceleradores del crecimiento y la floración, teniendo cultivos enriquecidos de nutrientes por medio de la aplicación en suelo de fertilizantes y el uso de agentes que potencian el crecimiento eliminando las plagas con fungicidas (para
matar hongos), desintegrando malezas con herbicidas (eliminar plantas que roban nutrientes al cultivo), alejando insectos con insecticidas (quitar animales que comen la flor), ahuyentando gusanos de la tierra con nematicida (para hacer prospero el crecimiento de las raíces) y controlando los roedores con rodenticida.

Los métodos de producción de plantas ornamentales modernos constantemente se actualizan en la búsqueda de la optimización de recursos y generación de mayores ganancias. Teniendo la manifestación de riesgos en el ciclo de elaboración y venta de plantas por la aparición de plagas que buscan consumir los recursos orgánicos de cada plantación, la presencia de los factores naturales originarios del ecosistema y la acción misma del hombre, son factores importantes que toman parte.

La distribución de las instalaciones permite proteger los cultivos de plantas con infraestructura que contempla túneles, invernaderos y cobertizos. Su alto grado de aprovechamiento en el uso de los recursos como agua y espacio fomentan la productividad.

A finales del siglo XX se iniciaron desarrollos que facilitaban las labores repetitivas del campo, tiendo oportunidad de mantener soluciones en la gestión integral de los cultivos, así como en la óptima administración de los recursos por medio de sistemas expertos, que hacían uso de avances tecnológicos en electrónica, mecánica y sistemas operativos.

La primera generación de estas máquinas era capaz de realizar búsquedas y posicionarse en un terreno de forma predeterminada, todo ello con ayuda de tecnologías de transmisión de datos por radiofrecuencias, lo que les permite efectuar un intercambio de información con otros dispositivos.

Se puede decir que a inicios del siglo XXI una nueva generación de robots no tripulados equipados con tecnología de punta puede ir más allá, efectuando tareas más complejas de manera autónoma, pues son provistos con inteligencia artificial, redes sensoriales y dispositivos de comunicación precisos.
Esta inclusión de tecnologías en la agricultura muestra un gran panorama hacia el futuro; teniendo sistemas de cultivos con desarrollos que impactan en el aumento de la rentabilidad del sector y la economía de los productores y en la acción de buenas prácticas de producción.

El desarrollo de esta investigación implica la captura de imágenes en tiempo real. Estas serán procesadas con ayuda de una librería llamada “OpenCV Framework”.

El OpenCV framework surgió de una iniciativa de investigación de Intel para avanzar en aplicaciones intensivas de la CPU. Con este fin, Intel lanzó muchos proyectos, incluyendo el trazado de rayos en tiempo real y paneles de visualización en 3D.

OpenCV se concibió como una manera de hacer que la infraestructura de la visión por computadora fuera universalmente disponible. Con la ayuda de la biblioteca Rendimiento del equipo de Intel, comenzó con un núcleo de código implementado y especificaciones algorítmicas escritas en lenguaje C de rendimiento-optimizado y C++. Había varias metas para OpenCV desde el principio:

- Avanzar en la investigación de visión, proporcionando código abierto no sólo, sino también optimizado para infraestructura visión básica. No más de reinventar la rueda.
- Difundir el conocimiento de visión al proporcionar una infraestructura común que los desarrolladores podría basarse en, por lo que el código sería más fácilmente legible y transferible.
- Aplicaciones comerciales de anticipada visión base, haciendo portátil, con código optimizado disponible de forma gratuita, con una licencia comercial libre que no requería comprarse para que las aplicaciones sean abiertas o liberarse.

2.2. Marco Contextual

Investigaciones previas desarrolladas muestran el uso de tecnologías, algoritmos y métricas que marcan la línea a seguir. Lo desarrollado De Lima, Roberto, Martínez Carranza, José,
Morales Reyes, Alicia, Cumplido, René. 2015. “Accelerating the construction of BRIEF descriptors using an FPGA-based architecture”. Quiénes han trabajado en un método de procesamiento de imágenes, tomando algoritmos de histogramas con orientación a gradientes y otros más novedosos como SIFT y SURF que procesan imágenes con escalas y transformaciones para finalmente crear una versión mejorada de un algoritmo antecesor a éstos últimos BRIEF que tiene la cualidad de profundizar en la longitud y pruebas binarias en imágenes al cual llamaron ORL. Toda la implementación se llevó a cabo con el uso de la librería OpenCV.

De manera comercial tenemos tres desarrollos que se acercan al trabajo realizado:

OPTiM es una iniciativa que se desarrolla en la Universidad de Saga, Japón. En agosto de 2015, el gobierno de Saga logra formar parte de la promoción y producción "divertido, fresco, la agricultura gana. La universidad de Saga y la Facultad de Agricultura, así como Optim siendo el tercero en el campo de las TI agrícola, utilizando como IO una cámara de red en un avión no tripulado y un dispositivo portátil se dio un acuerdo de colaboración. El conocimiento académico de la Universidad Saga y la Facultad de Agricultura, acercaron el conocimiento práctico y el gobierno de Saga, por una variedad de enfoques combina la tecnología de Optim, que tiene como objetivo mejorar la eficiencia y la sofisticación y la comercialización de la agricultura. (SAGA University, 2015). OPTiM es una solución optimizada para la agricultura de pequeñas dimensiones y cuatro motores propulsores, con cámaras de video y térmicas para selección de multi-espectros, encuentra insectos con el análisis de las imágenes.

Como podemos observar en la (fig. 2.1) Optim usa una lámpara de luz ultravioleta (UV) que se sostiene de la estructura del dron para contabilizar las plantas por algunos tipos de cultivo precargados en su sistema, además es capaz de procesar las imágenes e identificar en el campo de cultivo las diferentes especies de plantar ornamentales en desarrollo.
2.3. Marco Teórico

Los algoritmos basados en características se han vuelto muy populares a la posición de estimar y realizar también un seguimiento en 3D sobre puntos de referencia. “Parallel Tracking and Mapping – PTAM”, es un marco visual de “Simultaneous Localization And Mapping SLAM” que se ha utilizado en quadro-copters para realizar tareas sencillas, como mantener la estabilidad y también para llevar seguimiento geométrico por caminos en el interior y al aire libre.

Una técnica reciente llamada SVO (semi-directa monocular odometría visual). También puede habilitar way-point basada en navegación autónoma, incluso cuando se optimiza para trabajar con cámaras orientadas verticalmente. (Martínez Carranza, 2015)

Existen aspectos que todo Sistema de Visión considera como:

- La detección de bordes. Es una de las operaciones más comúnmente utilizados en el análisis de imágenes, y hay probablemente más algoritmos en la literatura para mejorar la detección de bordes que cualquier otro tema. La razón de esto es que los bordes formar el contorno de un objeto.
Como se aprecia en la (fig. 2.2) un *borde* es el límite entre un objeto y el fondo, e indica el límite entre la superposición objetos. Esto significa que, si los bordes en una imagen pueden ser identificados con precisión, todos los objetos pueden ser localizados, y las propiedades básicas tales como el área, perímetro.

Desde la visión artificial consiste en la identificación y clasificación de objetos en una imagen. La detección de bordes es una herramienta esencial.

![Figura 2.2. Se ilustra un ejemplo sencillo de detección de bordes. Existen dos objetos superpuestos en la imagen original: (a), que tiene un color gris uniforme fondo; y (b), la versión de bordes mejorada de la misma imagen tiene líneas oscuras que describen los tres objetos.](image)

Teniendo en cuenta que no hay forma de saber qué partes de la imagen son de fondo y que son objeto; sólo los límites entre se identifican las regiones. Sin embargo, dado que las manchas en la imagen son las regiones, se puede determinar que la burbuja contados "tres" cubre una parte de la burbuja "dos", y es por lo tanto más cerca de la cámara.

La detección de bordes es parte de un proceso llamado *segmentación* – consiste en la identificación de regiones dentro de una imagen y la localización de los píxeles del
borde. Es posible mejorar la detección del borde con el aumento del contraste entre
los bordes y el fondo para que sean más visibles.

- **Ruido.** Todos los procesos de adquisición de imágenes están sujetos a ruido de algún
tipo. El ruido no puede predecirse con precisión debido a su naturaleza aleatoria, y no
puede incluso ser medida con precisión a partir de una imagen con ruido, ya que las
contribuciones a los niveles de gris del ruido no se pueden distinguir de los datos de
píxeles.

Sin embargo, el ruido a veces puede ser caracterizado por su efecto sobre la imagen y
es por lo general expresado como una distribución de probabilidad con una media y
estándar específico desviación.

Dos tipos de ruido son de interés específico en el análisis de imágenes:

- El ruido de la señal independiente, de un conjunto aleatorio de niveles de gris,
estadísticamente independientes de los datos de imagen, añadido a los píxeles
de la imagen para dar la resultante ruidosa imagen. Este tipo de ruido se
produce cuando una imagen se transmite electrónicamente de un lugar a otro.

- El ruido de la señal dependiente, el nivel del valor de ruido en cada punto de la
imagen es una función de los niveles de gris. El grano o píxel se ve en algunas
de las fotografías, y por lo general es más difícil de tratar. Es difícil ver esto
en todas las variaciones aleatorias, pero un buen detector de borde debe ser
capaz de determinar la posición del borde incluso en esta situación.

Como se puede observar en la (fig. 2.3) el ruido en una imagen de ambos píxeles del
borde y los píxeles de ruido se caracterizan por un cambio significativo en nivel de
gris, en comparación con su entorno. El hecho de que los píxeles del borde conectan el
uno al otro para formar un contorno permite una distinción que debe hacerse entre los
dos.
Un borde de paso sometido a ruido de un tipo que puede ser caracterizado por una distribución normal. Esto es una ventaja artificial generada por computadora, por lo que se conoce su ubicación exacta. Es difícil ver esto en todas las variaciones aleatorias, pero un buen detector de borde debe ser capaz de determinar la posición del borde incluso en esta situación.

![Figura 2.3. Imagen con ruido. (a) Un borde de paso sometido a una distribución normal de ruido (Gauss), (b) Con una desviación estándar de 10, (c) La desviación estándar es de 20. Note que el borde está perdiendo ruido en el azar.](image)

Hay básicamente tres tipos comunes de operadores para la localización de los bordes.

- El primer tipo es un operador derivado diseñado para identificar lugares donde hay grandes cambios de intensidad.
- El segundo tipo se asemeja a un esquema de coincidencia de plantilla, donde el borde se modela con una pequeña imagen que muestra las propiedades abstractas de un borde perfecto.
- Por último, existen operadores que utilizan un modelo matemático del borde.

La mejor de ellas utilizan un modelo del ruido también, y hacer un esfuerzo para tomar tenerlo en cuenta (Parker, 2011).

Las librerías OpenCV de Intel. Están dirigidas para proporcionar las herramientas necesarias para resolver los problemas de visión por computadora (Kaehler, 2008). En la (fig. 2.4) se aprecia su estructura a grandes rasgos contiene cuatro componentes principales., tales como:
- El componente de CV contiene el procesamiento de imágenes básico y de nivel superior algoritmos de visión por ordenador.
- ML es la biblioteca de aprendizaje de máquina, lo que incluye a muchos clasificadores y herramientas de agrupamiento estadístico.
- HighGUI contiene rutinas y funciones de Entrada/Salida para almacenar y cargar el vídeo y las imágenes.
- CXCore contiene las estructuras de datos básicos y el contenido.

**Figura 2.4. Estructura básica de OpenCV.**

OpenCV es una librería abierta que ha permitido a investigadores hacer aportes en los sistemas de visión con la creación de algoritmos para procesamiento de imágenes que a continuación, se presenta una clasificación de aquellos nos permiten efectuar nuestro desarrollo:

En la (fig. 2.5) se observa como los algoritmos de histogramas recogen datos organizados en una matriz con valores de píxeles de los 3 canales RGB, estos son útiles para describir una imagen en un conjunto predefinido de contenedores llamados “bins”. En la (fig. 2.6) se detalla la funcionalidad de los contenedores, estos son sub partes, específicamente 16
segmentos que agrupan nuestra gama de límites de valores que se deben medir con rangos de 0-255 distribuidos en bloques menores con valores de 16 unidades, esto nos permite llevar el conteo del número de píxeles que cae en cada uno de los rangos “bin”. La unión de todos ellos se caracteriza en una imagen completa.

Figura 2.5. Matriz que contiene información de una imagen (Intensidad en el rango de 0 a 255).

En 2004, D. Lowe, Universidad de Columbia Británica, creó un nuevo algoritmo llamado “Transformación de Escala de Funciones Invariantes (Scale Invariant Feature Transform - SIFT)” compuesto por 5 etapas y que extraer puntos clave y calcula sus descriptores (OpenCV, SIFT, 2015).

Primera etapa. Espacio-Escala de Detección Extrema. No podemos utilizar la misma ventana para detectar puntos clave con diferente escala, pero si podemos usar una pequeña esquina. Para detectar esquinas grandes necesitamos ventanas más grandes, para esto se utiliza el filtrado de espacio-escala. Siguiendo la teoría desarrollada por Laplaciano de Gauss se encontraron para la imagen varios valores de \( \sigma \) escala.
Tal como se observa en la (fig. 2.7) la representación de octavas de la imagen que el algoritmo SIFT utiliza hace uso de la diferencia Gaussiana (DOG), que es una aproximación de registro y se obtiene como la diferencia de desenfoque gaussiano de una imagen con dos diferentes σ, este proceso se realiza para diferentes octavas de la imagen en pirámide Gaussiana.

![Representación de octavas de la imagen en pirámide gaussiana.](image)

**Figura 2.7. Representación de octavas de la imagen en pirámide gaussiana.**

Una vez que se encuentran las Diferencias de Gauss (DOG) las imágenes se buscan en los extremos locales sobre la escala y el espacio. Un píxel en una imagen se compara con sus vecinos 8 y 9 píxeles en escala siguiente y 9 píxeles en las escales anteriores. Si es un extremo local, es un punto significativo potencial, Básicamente significa que este punto clave está mejor representado en esa escala.

**Segunda etapa.** Localización Keypoint. Una vez que se encontraron ubicaciones potenciales con puntos clave, estos tienen que ser refinados para obtener resultados más precisos y ubicación exacta de los extremos. Si la intensidad en este extremo es menor que un valor umbral (0.03 según el papel) se rechaza. Este umbral se llama “**constrastThreshold**” en OpenCV.
La diferencia Gauss (DOG) tiene mayor respuesta a bordes, por lo que los bordes tienen que ser eliminados. Si esta relación es mayor que un umbral. Por lo que elimina cualquier punto clave de bajo contraste y puntos clave de borde, y lo que queda son puntos fuertes de interés, en OpenCV llamado edgeThreshold.

**Tercera etapa.** Orientación. Se asigna una orientación a cada punto para lograr invariancia a la rotación de la imagen. Dependiendo de la escala y la magnitud y la dirección del gradiente se calcula en esa región “neighbourhood”. Se crea un histograma con 36 contenedores que cubren 360 grados. Se pondera por la magnitud del gradiente y ventana circular Gaussiana ($\sigma = 1.5$ veces a la escala de punto significativo). El pico más alto en el histograma se toma y cualquier pico por encima de 80% de la misma también se considera para calcular la orientación.

**Cuarta etapa.** Puntos Clave Descriptores. Los puntos clave que igualan entre dos imágenes se corresponden con la identificación de sus vecinos cercanos. Una región “neighbourhood” de 16x16 alrededor del punto significativo se toma. Se divide en 16 sub-bloques de tamaño 4x4. Para cada sub-bloque, se crea 8 bin histograma orientación. Por lo que un total de 128 valores de ubicación están disponibles. Se representa como un vector para formar descriptor punto significativo. Además de esto, se toman varias medidas para lograr robustez frente a cambios de iluminación, rotación, etc.

**Quinta etapa.** Puntos Clave que Igualan. Los puntos clave entre dos imágenes se corresponden con la identificación de sus vecinos más cercanos. Puede ser que el ruido o algunas otras razones pueden estar muy cercas. Se descartan alrededor del 90% de falsos partidos. En OpenCV es llamado “sift.detect”

El algoritmo de funciones sólidas aceleradas (Speeded-Up Roboust Features - SURF) es una evolución de SIFT que va un poco más allá y se aproxima a la caja de registro con filtro. En 2006, tres personas, Bahía, H., Tuytelaars, T. y Van Gool, L. publicaron el nuevo algoritmo de Aceleración de Características Robustas SURF (OpenCV, SURF, 2014). Una gran ventaja
División de Estudios de Posgrado e Investigación
Procesamiento de Imágenes de Plantas Ornamentales Multi-Escala para Calcular su Crecimiento

de esta aproximación es que de la convolución con filtro se puede calcular fácilmente con la ayuda de imágenes integrales, y puede hacerse en paralelo para diferentes escalas.

Para la orientación SURF utiliza las respuestas de ondas pequeñas en dirección horizontal y vertical para un “neighbourhood” de tamaño de 6s.

3. Métodos Empleados

La investigación documental necesaria fue ampliamente estudiada sobre temas de investigaciones relacionados a técnicas, métodos y herramientas tecnológicas usadas en Viveros, Digitalización de Imágenes y la Agricultura de Precisión. Se encontraron trabajos muy significativos de México, Japón, Francia y Estados Unidos de América con aproximación a los objetivos de esta investigación, y se detectaron áreas de oportunidad que nadie ha considerado, con el desarrollo de un método para Calcular el Crecimiento en las Plantas Ornamentales.

En la reflexión de la hipótesis del trabajo es importante establecer la variable dependiente con el desarrollo de métodos y herramientas tecnológicas, así como la variable independiente producción, que se interpreta como: A mayor desarrollo de métodos y herramientas tecnológicas, se promueven la productividad y competitividad de los viveristas de plantas ornamentales.

El flujo de la información inicia con la necesidad de conocer cómo se desarrollan los cultivos, esto involucra actores como el Sistema Unificado para la Trazabilidad, en conjunto con el Administrador y Supervisores. El diseño sobre la interacción de todos ellos, los datos requeridos y obtenidos de sus procesos mostrados claramente con los diseños del experimento utilizado en el Modelo de Casos de Uso, así como en el Modelo de Seguimiento descritos en el capítulo siguiente.
3.1. Metodología de Proceso Unificado Ágil.

Para dar sustento al desarrollo de este trabajo y replicarlo en un futuro se decidió integrar una metodología para proyectos ágiles conocida como Proceso Unificado Ágil (PUA). En 2005, (Ambler, 2005) propone una versión mejorada y simplificada del Proceso Unificado Racional (RUP). El enfoque de PUA se aplica por medio de técnicas ágiles que incluyen el Desarrollo Impulsado por Pruebas (TDD), Desarrollo Impulsado por Modelado Ágil (AMDD), la gestión del cambio ágil y refactorización de base de datos para mejorar la productividad. Conceptualmente se observa en la (fig. 3.1) el ciclo de vida de la metodología PUA sus fases, disciplinas, iteraciones, filosofías y políticas.

![Figura 3.1. Ciclo de Vida de la Metodología PUA.](image)

Para la fase de iniciación se lleva a cabo la estrategia descrita a detalle en la Tabla 3.1, en donde se plantea el modelo conceptual para la realización de la Investigación.

La filosofía que es base en esta metodología ágil sigue los principios:

- Su personal sabe lo que están haciendo. La gente no va a leer la documentación detallada del proceso, pero ellos van a querer alguna orientación de alto nivel y/o la formación de vez en cuando. PUA ofrece enlaces a muchos de los detalles, si está interesado, pero no los obliga a usted.
- Simplicidad. Todo se describe de forma concisa utilizando un puñado de páginas, no miles de ellos.
• Agilidad. El proceso unificado ágil ajusta los valores y principios de la Alianza Ágil.
• Centrarse en actividades de alto valor. La atención se centra en las actividades que en realidad cuentan, no todas las posibles que le puede pasar a usted en un proyecto.
• Herramientas Independientes. Se puede utilizar cualquier conjunto de herramientas que desea con el proceso unificado ágil.
• Adaptabilidad. El producto del proceso unificado ágil (PUA) es fácilmente adaptable a través de cualquier herramienta de edición HTML común.

Las fases de la metodología PUA se capturan en cuatro fases:

1. Inicios. El objetivo es identificar el alcance inicial del proyecto, una arquitectura potencial de su sistema, y para obtener la financiación del proyecto inicial y la aceptación de las partes interesadas.
2. Elaboración. El objetivo es probar la arquitectura del sistema.
3. La construcción. El objetivo es construir el software que trabaja sobre una base regular, incremental, que satisface las necesidades de más alta prioridad de los interesados en el proyecto.
4. Transición. El objetivo es validar e implementar el sistema en su entorno de producción.

3.2. Modelo.

En el desarrollo del modelo para reconocimiento de patrones en plantas ornamentales se implementaron las siguientes actividades que se describen en la tabla 3.1. Con ello, se establece un procedimiento que describe cronológicamente las actividades necesarias para cumplir con los objetivos planteados.
### Tabla 3.1. Procedimiento para el Desarrollo de la Investigación

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>AGOSTO</th>
<th>SEPTIEMBRE</th>
<th>OCTUBRE</th>
<th>NOVIEMBRE</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23</td>
<td>30</td>
<td>06 13</td>
<td>20 27</td>
<td>04</td>
</tr>
<tr>
<td>Planificación de actividades.</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estudio de factibilidad de cada uno de los componentes, considerando la búsqueda de fuentes de información, herramientas tecnológicas y patentes asociadas al campo del conocimiento.</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Análisis y diseño de cada uno de los componentes básicos del sistema propuesto.</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>ConSTRUCCIÓN DEL SISTEMA PARA CALcular el CRECIMIENTO DE LAS PLANTAS Ornamentales:</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>1.- Efectuar la instalación, configuración y puesta en marcha del servicio XAMPP que incluye un servidor Apache y el manejador de base de datos MySQL.</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.- Emplear un manejador de Base de Datos como MySQL para diseñar un almacén de datos llamado “Catálogo de Plantas” que incluya llaves indexadas y datos específicos de cada una de las plantas ornamentales.</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>3.- Crear el diseño global de las tablas que integran el sistema que nos permita efectuar consultas de las plantas.</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>4.- Efectuar la instalación del lenguaje de programación Python.</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>5.- Efectuar la instalación de la librería OpenCV, así como de sus componentes para procesamiento de imágenes como Numpy, CV2, Sys, liburl, entre otros.</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>6.- Desarrollar una aplicación que procesa las imágenes que sea ejecutada localmente en un equipo de alto rendimiento con ayuda del lenguaje de programación Python.</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>7.- Desarrollar los algoritmos necesarios para calcular el crecimiento de las plantas ornamentales.</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>8.- Alimentar la tabla que contiene imágenes de las plantas base y/o modelo para incorporar un almacén robusto.</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>9.- Ejecutar el algoritmo para Calcular el Crecimiento logrando realizar la igualación entre imágenes base y reducciones, teniendo como objetivo determinar el crecimiento de las plantas ornamentales.</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>10.- Vincular la información generada con el Sistema Unificado de la Trazabilidad.</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>ACTIVIDAD</td>
<td>AGOSTO</td>
<td>SEPTIEMBRE</td>
<td>OCTUBRE</td>
<td>NOVIEMBRE</td>
<td>DIC</td>
</tr>
<tr>
<td>---------------------------------------------------------------------------</td>
<td>--------</td>
<td>------------</td>
<td>---------</td>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>Adquisición e instalación de equipos, herramientas y componentes para cada uno de los módulos del sistema; Operación de los módulos del sistema.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Estudios comparativos de los resultados obtenidos en un ámbito nacional y global. Análisis de los resultados obtenidos en el estudio comparativo.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ajustes operacionales de los módulos y componentes del sistema.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Construcción de equipos y componentes de software y hardware del sistema.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Validación del sistema implantado.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Estudio de los resultados obtenidos.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Reporte técnico final del proyecto.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Tabla 3.1. Procedimiento para el Desarrollo de la Investigación (Continuación)
Las disciplinas se llevan a cabo de manera iterativa, la definición de las actividades que realizan los miembros del equipo de desarrollo para construir, validar y desplegar software de trabajo que satisface las necesidades de sus grupos. Entre las disciplinas de la metodología tenemos:

- **Modelo.** El objetivo de esta disciplina es entender el negocio de la organización, el dominio del problema siendo abordado por el proyecto, e identificar una solución viable para hacer frente al dominio del problema.

- **Implementación.** El objetivo de esta disciplina es transformar su modelo (s) en código ejecutable y para llevar a cabo un nivel básico de las pruebas, en particular, las pruebas unitarias.

- **Prueba.** El objetivo de esta disciplina es llevar a cabo una evaluación objetiva para garantizar la calidad. Esto incluye la búsqueda de defectos, la validación de que el sistema funciona tal como fue diseñado, y verificar que se cumplen los requisitos.

- **Despliegue.** El objetivo de esta disciplina es planear para la entrega del sistema y para ejecutar el plan para hacer que el sistema de disposición de los usuarios finales.

- **Gestión de la Configuración.** El objetivo de esta disciplina es gestionar el acceso a los artefactos del proyecto. Esto incluye no sólo el seguimiento de las versiones de artefactos con el tiempo, sino también el control y la gestión de los cambios a los mismos.

- **Gestión de Proyectos.** El objetivo de esta disciplina es dirigir las actividades que lleva a cabo el proyecto. Esto incluye la gestión de los riesgos, la dirección de personas (la asignación de tareas, seguimiento del progreso, etc.), y coordinar con las personas y los sistemas fuera del alcance del proyecto para asegurarse de que se entregue a tiempo y dentro del presupuesto.

- **Medio Ambiente.** El objetivo de esta disciplina es apoyar el resto de los esfuerzos por asegurar que el proceso adecuado, orientación (normas y directrices) y herramientas (hardware, software, etc.) están disponibles para el equipo, según sea necesario.
División de Estudios de Posgrado e Investigación
Procesamiento de Imágenes de Plantas Ornamentales Multi-Escala para Calcular su Crecimiento

El equipo de desarrolladores suele suministrar versiones de desarrollo al final de cada iteración en la zona de espera de la preproducción(es). En la (fig. 3.2), se observa como las versiones son incrementales en el tiempo, y sus lanzamientos de desarrollo son menores a medida que se incrementan los lanzamientos de producción.

![Diagrama de versiones incrementales en el tiempo](image)

Figura 3.2. Versiones Incrementales en el Tiempo

4. Desarrollo de la investigación

En el siguiente capítulo se describen las fases seguidas en el proceso para instrumentar la investigación.

4.1. Análisis

Es necesario lograr la comprensión precisa de los requisitos del sistema y ofrecer una estructura conjunta mediante la descripción de modelos.

4.1.1. Modelo Conceptual (Big Picture)

Se tiene un alto grado de autonomía contando con intervenciones de personal operativo para las funciones como:

- **Administrador.** Este agente tendrá las capacidades para controlar la aplicación para el procesamiento de las imágenes capturadas, hacer la descarga de los archivos en un equipo local y realizar la ejecución del algoritmo para Calcular el Crecimiento de las Plantas Ornamentales. En general puede llevar el seguimiento y es considerado el súper usuario del sistema.

- **Supervisor.** Este agente tiene la capacidad de conocer las distintas variedades de plantas ornamentales.
En la (fig. 4.1) se puede observar la arquitectura desarrollada y el uso de tecnologías de información, así como la imagen global de los módulos implementados y sus funciones.

4.1.2. Diagramas de Actividades con Responsabilidades

La estimación del crecimiento conlleva el seguimiento de la secuencia de cuatro actividades en las que intervienen tres de los actores más relevantes del sistema, el administrador es quien arranca la actividad, en la operación local interviene sólo el sistema, posteriormente se reporta al servidor con el Sistema Unificado para la Trazabilidad, que es un desarrollo compuesto por un Sistema de Información automatizado para la trazabilidad de la producción de plantas ornamentales vivas,
División de Estudios de Posgrado e Investigación
Procesamiento de Imágenes de Plantas Ornamentales Multi-Escala para Calcular su Crecimiento

basado en la conjunción de tres sistemas: a) Sistema de Gestión de Calidad especificado por el estándar ISO 9001, b) Sistema de Gestión de Inocuidad expresado en el Manual de Buenas Prácticas Agrícolas y c) Sistema de Trazabilidad definido por el ISO 22005 y el Manual de Trazabilidad de la SAGARPA. Cuyo propósito es tener una herramienta tecnológica para automatizar el proceso de trazabilidad y mejora de la rentabilidad económica de los cultivos en México y el Estado de Colima que poseen condiciones favorables para consolidar su horticultura ornamental.

En la (fig. 4.2) se observa un diagrama de actividades y sus usuarios con la finalidad de poder calcular el crecimiento de las plantas ornamentales.

*Figura 4.2. Diagrama de Actividad con Responsabilidad para Estimación del Crecimiento.*
La actividad para el procesamiento de imágenes contempla la operación del sistema. Iniciada por el actor administrador, y tomando la mayor carga el sistema al programarse la obtención de los recursos digitales con los cuales se trabaja con la igualación entre capturas de imágenes de plantas versus imágenes base y/o modelo con históricos en bitácoras de clases de plantas. Finalmente se alimenta el almacén de datos con nueva información obtenida del procesamiento en el Sistema Unificado para la Trazabilidad antes mencionado y que está montado en un servidor remoto. Tal como se puede observar en la siguiente (*fig. 4.3*).
Figura 4.3. Diagrama de Actividad con responsabilidades para Procesamiento de Imágenes.
4.1.3. **Modelo de Casos de Uso**

Los Casos de Uso marcan la línea a seguir para el desarrollo del trabajo. La secuencia se muestra en la siguiente (fig. 4.4):

![Diagrama de Casos de Uso](image.png)

*Figura 4.4: Los Casos de Uso que Integran el Trabajo.*

Es relevante conocer los actores del sistema, sus roles son definidos con anterioridad en el punto 4.1.1. Modelo conceptual (BigPicture), y su interacción se define en los 17 casos de uso principales desarrollados en la investigación. La organización general de ello se puede ver en la (fig. 4.5).
La parte medular de este trabajo es el caso de uso del Procesamiento de imágenes de Plantas Ornamentales Multi-Escala para Calcular su Crecimiento. En él se describen las funciones e interacción con actores el manejo del robusto catálogo de imágenes que son transferidas desde el Sistema Unificado para la Trazabilidad montado en un almacén de datos de un servidor remoto para contener información de los resultados generados por el trabajo de las rutinas mencionadas. Toda esta secuencia se observa en la (fig. 4.6).
4.1.4. Modelo de Requisitos

Fue necesario indicar las reglas que garanticen la funcionalidad de los casos de uso anteriormente mencionados, ello implica considerar validaciones estrictas y organizar las mismas de acuerdo a su impacto en los escenarios que se presenten por ser requisitos funcionales, tal como se encuentran en la (fig. 4.7).
Todo aquello que nos lleve a su cumplimiento y que establece su comportamiento es considerado un requisito no funcional, y catalogado como de transporte, para la seguridad, con la persistencia y la obtención de un buen rendimiento en todo el sistema. Los requisitos no funcionales del sistema son descritos a continuación en la siguiente (fig. 4.8).

\[ \text{Figura 4.7. Requisitos Funcionales del Sistema} \]
4.2. Diseño

La presentación de la estructura interna del software y sus modelos implementados en la construcción de la solución es detallada a continuación.

4.2.1. Modelo de Clases

El modelo de clases para el sistema contempla la creación de seis objetos principales que se relacionan por medio de una estructura orientada a objetos y todas sus características como herencia de clases. El modelo incluye tres interfaces relevantes como lo son: la estimación del crecimiento, el contador de plantas y la detección de plagas. Por último, el modelo considera tres bitácoras que requieren sus métodos privados programables. El modelo se encuentra detallado en la (fig. 4.9).
4.2.2. **Modelo de Datos**

El recurso digital, las bitácoras y los datos de los catálogos de plantas, personal y cálculo de estimación de crecimiento están alojados en los almacenes de datos remotos requieren de un diseño estructurado para la consulta, registro y extracción de datos que permiten la operación del sistema en general.

En la (fig. 4.10) tenemos los requerimientos establecidos son considerados en el diseño del modelo Entidad-Relación, respetando las normas formales para garantizar la integridad de entidad exigiendo el uso de claves principales e índices, integridad de dominio restringiendo el tipo de datos y su formato, por último con la integridad referencial que garantiza que las llaves usadas en las relaciones existan y sean coherentes restringiendo la omisión de las mismas ante la eliminación en cascada de datos, lo cual se omite, al soló incluir campos tipo bandera que restringen la visualización de información, en lugar de eliminar información definitivamente.
4.2.3. Diccionario de Datos

El diccionario de datos que a continuación se muestra en las siguientes tablas nos permite esclarecer el funcionamiento de los almacenes de datos usados en el sistema y sus metadatos estableciendo las condiciones en la cual opera el mismo.

La tabla 4.1 almacena datos de acceso a la aplicación y delimita funciones operativas para los usuarios, dejando información para identificarlos.

**Tabla 4.1. Tabla con información del personal (personal)**

<table>
<thead>
<tr>
<th>Columna</th>
<th>Tipo</th>
<th>Nulo</th>
<th>Enlaces</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>idPersona (Primaria)</td>
<td>int(11)</td>
<td>No</td>
<td></td>
<td>Identificador y llave primaria de la tabla que vincula con los usuarios que intervienen en el Sistema de Estimación de Crecimiento y detección de plagas.</td>
</tr>
</tbody>
</table>
La tabla 4.2 nos muestra la relación de los campos llave de la tabla Personal y el tipo de relación dentro del modelo de datos.

<table>
<thead>
<tr>
<th>Nombre de la clave</th>
<th>Tipo</th>
<th>Único</th>
<th>Empaquetado</th>
<th>Columna</th>
<th>Cardinalidad</th>
<th>Cotejamiento</th>
<th>Nulo</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMARY</td>
<td>BTREE</td>
<td>Sí</td>
<td>No</td>
<td>idPersona</td>
<td>0</td>
<td>A</td>
<td>No</td>
<td>Variable tipo bandera usada para determinar si es necesario</td>
</tr>
</tbody>
</table>

La tabla 4.3 almacena datos a manera de bitácora e historial de los muestreos de cálculo de crecimiento con la finalidad de poder llevar un control de los periodos en los cuales se analizan los cultivos de plantas ornamentales, dejando información para la obtención de reportes.

<table>
<thead>
<tr>
<th>Columna</th>
<th>Tipo</th>
<th>Nulo</th>
<th>Enlaces a</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>idEstima (Primaria)</td>
<td>int(11)</td>
<td>No</td>
<td></td>
<td>Identificador y llave primaria de la tabla que registra la ejecución de la aplicación para la estimación de crecimiento. Identificador de la bitácora de Crecimiento.</td>
</tr>
<tr>
<td>fechaCrecimiento</td>
<td>Date</td>
<td>No</td>
<td></td>
<td>Registro de la fecha de la ejecución de la aplicación.</td>
</tr>
<tr>
<td>fotoCrecimiento</td>
<td>Text</td>
<td>No</td>
<td></td>
<td>Evidencia gráfica generada por la interfaz de estimación de crecimiento.</td>
</tr>
<tr>
<td>Lógico</td>
<td>int(1)</td>
<td>No</td>
<td></td>
<td>Variable tipo bandera usada para determinar si es necesario mostrar o no el registro solicitado. Puede ser 0=activo, 1=Eliminado</td>
</tr>
</tbody>
</table>
La tabla 4.4 nos muestra la relación de los campos llave de la tabla *bitacoracrecimiento* y el tipo de relación dentro del modelo de datos.

### Tabla 4.4. Tabla con información de Índices (tb_bitacoracrecimiento)

<table>
<thead>
<tr>
<th>Nombre de la clave</th>
<th>Tipo</th>
<th>Único</th>
<th>Empaquetado</th>
<th>Columna</th>
<th>Cardinalidad</th>
<th>Cotejamiento</th>
<th>Nulo</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMARY</td>
<td>BTREE</td>
<td>Sí</td>
<td>No</td>
<td>idEstima</td>
<td>0</td>
<td>A</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>idPlanta</td>
<td>BTREE</td>
<td>No</td>
<td>No</td>
<td>idPlanta</td>
<td>0</td>
<td>A</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

La tabla 4.5 almacena datos a manera de catálogo logrando describir explícitamente las características, cuidados, tamaños, y más cualidades descriptivas de los cientos de tipos y variedades de planta ornamental, dejando información para la obtención de reportes.

### Tabla 4.5. Tabla con información del Catálogo de Plantas (tb_catalogogeneralplantas)

<table>
<thead>
<tr>
<th>Columna</th>
<th>Tipo</th>
<th>Nulo</th>
<th>Predeterminado</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>idPlanta <em>(Primaria)</em></td>
<td>bigint(20)</td>
<td>No</td>
<td>No</td>
<td>Identificador y llave primaria de la tabla que vincula con las características físicas de las plantas ornamentales. Llamado también catálogo General de Plantas.</td>
</tr>
<tr>
<td>pl_nombre</td>
<td>varchar(128)</td>
<td>No</td>
<td>No</td>
<td>Nombre común de la planta.</td>
</tr>
<tr>
<td>pl_nombreCientifico</td>
<td>varchar(128)</td>
<td>No</td>
<td>No</td>
<td>Nombre Científico de la planta.</td>
</tr>
<tr>
<td>pl_morfologia</td>
<td>varchar(64)</td>
<td>No</td>
<td>No</td>
<td>Descripción física de las características de la planta. Puede ser: Follaje, Arbusto, Árbol, etc. Compuesto con datos adicionales como: Especie, Variedad y Color de Floración, Tamaño, Tamaño del Follaje y Descripción Tamaño.</td>
</tr>
<tr>
<td>pl_especie</td>
<td>varchar(64)</td>
<td>No</td>
<td>No</td>
<td>Este dato complementa la morfología de la planta. Define especies y subespecies de la misma como: Exótica, Variegata, etc.</td>
</tr>
<tr>
<td>pl_variedad</td>
<td>varchar(128)</td>
<td>No</td>
<td>No</td>
<td>Describe la variedad de plantas que se pueden tener.</td>
</tr>
<tr>
<td>pl_tamañoFollaje</td>
<td>varchar(64)</td>
<td>No</td>
<td>No</td>
<td>Describe las dimensiones de la ramificación y follaje que puede tener la planta.</td>
</tr>
<tr>
<td>pl_descripcionTamano</td>
<td>text</td>
<td>No</td>
<td>No</td>
<td>Describe las dimensiones generales de la planta.</td>
</tr>
<tr>
<td>pl_floracion</td>
<td>varchar(32)</td>
<td>No</td>
<td>No</td>
<td>Especifica la época del año en la cual la planta entre en fase de generación de flor. Puede ser: Primavera, Verano, Otoño, Invierno o todo el año.</td>
</tr>
<tr>
<td>pl_colorFloracion</td>
<td>varchar(32)</td>
<td>No</td>
<td>No</td>
<td>Describe el color de la flor de la planta.</td>
</tr>
<tr>
<td>pl_descripcionFloracion</td>
<td>text</td>
<td>No</td>
<td>No</td>
<td>Permite describir cuidados necesarios para mantener la flor saludable.</td>
</tr>
<tr>
<td>pl_ecosistema</td>
<td>varchar(32)</td>
<td>No</td>
<td>No</td>
<td>Descripción del tipo d clima en donde vive la</td>
</tr>
</tbody>
</table>

~ 46 ~
### División de Estudios de Posgrado e Investigación

Procesamiento de Imágenes de Plantas Ornamentales Multi-Escala para Calcular su Crecimiento

<table>
<thead>
<tr>
<th>Columna</th>
<th>Tipo</th>
<th>Requiere</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>pl_descripcionClima</td>
<td>text</td>
<td>No</td>
<td>Describe las características necesarias para que la planta viva en óptimas condiciones.</td>
</tr>
<tr>
<td>pl_recomendacionClima</td>
<td>text</td>
<td>No</td>
<td>Tips para mantener en buena condición y saludable la planta.</td>
</tr>
<tr>
<td>pl.tipoFertilizante</td>
<td>varchar(64)</td>
<td>No</td>
<td>Especificar el tipo de fertilizante. Puede ser Líquido, Polvo, Granulat, etc.</td>
</tr>
<tr>
<td>pl.otroFertilizacion</td>
<td>varchar(64)</td>
<td>Sí</td>
<td>NULL</td>
</tr>
<tr>
<td>pl_frecuenciaFertilizacion</td>
<td>varchar(64)</td>
<td>No</td>
<td>Indica la frecuencia para fertilizar. Puede ser: 1 vez por semana, 1 vez cada 2 semanas, 1 vez cada 3 semanas, 1 vez al mes.</td>
</tr>
<tr>
<td>pl_riego</td>
<td>varchar(64)</td>
<td>No</td>
<td>Especifica la regularidad en que se requiere agregar agua a la planta. Puede ser: Diario, 1 vez por semana, 2 veces por semana, 3 veces por semana.</td>
</tr>
<tr>
<td>pl.otroRiego</td>
<td>varchar(64)</td>
<td>Sí</td>
<td>NULL</td>
</tr>
<tr>
<td>pl_cicloVital</td>
<td>varchar(64)</td>
<td>No</td>
<td>Especificar el periodo en el cual se puede retomar la producción. Puede ser: Anual, Perene, Temporada.</td>
</tr>
<tr>
<td>pl.tipoReproduccion</td>
<td>varchar(50)</td>
<td>No</td>
<td>Especifica la manera en que se pueden tener más plantas del mismo tipo. Puede ser: Por bulbos, Por hijos, Por Semilla, Por Esqueje/Tallo/Hoja, Por acodo/Aereo, Por injerto, Por separación de vástago, Por enmacetados, Por chupones, Por división, Por germinado, Por esporas de cultivo o tejido, Por Rizomas, etc.</td>
</tr>
<tr>
<td>pl_tiempoReproduccion</td>
<td>varchar(32)</td>
<td>No</td>
<td>Especifica el momento en que puede reproducirse la planta. Puede ser: Todo el año, Una vez al mes, una vez cada seis meses, etc.</td>
</tr>
<tr>
<td>pl.velocidadReproduccion</td>
<td>varchar(32)</td>
<td>No</td>
<td>Define el tiempo que tarda en crecer la planta y estar en condición de reproducirse. Puede ser: Rapido, Lento.</td>
</tr>
<tr>
<td>pl.recomiendaReproduccion</td>
<td>text</td>
<td>No</td>
<td>Tips del productor para mantener la planta saludable.</td>
</tr>
<tr>
<td>pl.usos</td>
<td>varchar(32)</td>
<td>No</td>
<td>Clasificar el uso que se le dará a la planta. Puede ser: Interiores o Exteriores.</td>
</tr>
<tr>
<td>pl.usosComercio</td>
<td>text</td>
<td>No</td>
<td>Tips del productor sobre el uso que se puede dar a la planta vendida y sembrada en exhibición en gran demanda. Puede ser: Decorar jardines en sol, Decorar camellones, Decorar salas privadas en sombra.</td>
</tr>
<tr>
<td>pl.fechaRegistro</td>
<td>date</td>
<td>No</td>
<td>Fecha de captura de la información de la planta.</td>
</tr>
<tr>
<td>pl.imagenFront</td>
<td>text</td>
<td>No</td>
<td>Archivo de imagen tomada desde la parte frontal.</td>
</tr>
<tr>
<td>pl.imagenReverso</td>
<td>text</td>
<td>No</td>
<td>Archivo de imagen tomada desde la parte trasera.</td>
</tr>
<tr>
<td>pl.imagenSuperior</td>
<td>text</td>
<td>No</td>
<td>Archivo de imagen tomada desde la parte superior.</td>
</tr>
<tr>
<td>Lógico</td>
<td>int(1)</td>
<td>No</td>
<td>Variable tipo bandera usada para determinar si es necesario mostrar o no el registro solicitado. Puede ser 0=activo, 1=Eliminado</td>
</tr>
</tbody>
</table>
La tabla 4.6 nos muestra la relación de los campos llave de la tabla catalogogeneralplantas y el tipo de relación dentro del modelo de datos.

<table>
<thead>
<tr>
<th>Nombre de la clave</th>
<th>Tipo</th>
<th>Único</th>
<th>Empaquetado</th>
<th>Columna</th>
<th>Cardinalidad</th>
<th>Cotejamiento</th>
<th>Nulo</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMARY</td>
<td>BTREE</td>
<td>Sí</td>
<td>No</td>
<td>idPlanta</td>
<td>0</td>
<td>A</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

4.2.4. Modelo de Interfaces

Este diseño incluye la representación de la distribución en pantalla de los componentes que integran el sistema y describe la forma en que interactúa el usuario con su funcionalidad y flujo.

Su presentación incluye un mecanismo de seguridad por “login”. En el cual se solicita al usuario hacer la captura de claves de acceso personalizadas para su ingreso al sistema. La siguiente vista incluye la presentación del módulo desarrollado para el procesamiento de imágenes, su apariencia es muy rudimentaria, debido a que el usuario solo establece unos pocos parámetros para iniciar con el renderizado. Tal como se aprecia en la siguiente (fig. 4.11).
La alimentación de información de los almacenes de datos se lleva a cabo por medio del Sistema Unificado para la Trazabilidad. La información que el sistema de procesamiento de imágenes genera como resultado también es concentrada en el almacén de datos del Sistema Unificado para la Trazabilidad. Con ello se busca que se la integración conjunta de todos los módulos para la emisión de reportes más detallados y completos. La interfaz web para el usuario se muestra en la (fig. 4.12).
Se integra un módulo sencillo de ayuda para comprender la operación del sistema, y se incluye manuales de operación e instalación del mismo. Lo cual se aprecia en la (fig. 4.13).

Figura 4.13. Interfaz de ayuda para el uso del sistema.
4.2.6. **Modelo de Componentes**

A continuación, se describe la estructura general del sistema y de los componentes que lo integran. El procesamiento se enfoca en el cálculo para la estimación de crecimiento. Relevante es el uso de una cámara que capture imágenes en formato jpeg/png. Un equipo local para instalar el lenguaje de programación Python, OpenCV, sus librerías y paquetes adicionales de compatibilidad, este debe incluir una tarjeta de gráficos avanzada para agilizar y afinar el trabajo de renderizado de imágenes. Por medio de conectividad a Internet por TCP/IP, hay una transmisión de información con los almacenes de datos montados en el servidor remoto, en el cual se aloja el Sistema Unificado para la Trazabilidad mencionado anteriormente. La (fig, 4.14) muestra su estructura física.

4.2.7. Modelo de Despliegue

La representación del sistema se observa a continuación en la (fig. 4.15). Donde se observa a grandes rasgos como el usuario Administrador se comunica con el sistema e instruye las funciones por realizar al equipo local y remoto. Por medio de protocolos de comunicación HTTP (Server) y TCP/IP (Equipo Local) efectúan extracciones de datos para su operación. El Operador del vehículo aéreo o dron es
quien se asiste de un equipo portátil o IPad para control los vuelos sobre los cultivos de plantas ornamentales.

4.3. Implementación

4.3.1. Instalación del Lenguaje de Programación Python

La instalación del lenguaje de programación Python fue realizada con ayuda de la documentación del sitio oficial. Fue necesario descargar un paquete instalador para el sistema operativo Windows 8.1 que no requiere de configuración adicional (The Python Software, 2015). La versión usada para este desarrollo fue la 2.7.10 que muestra un desempeño muy estable.

4.3.2. Instalación de la Librería OpenCV

Este potente complemento para el procesamiento de imágenes es compatible con el lenguaje de programación Python. Para manejar los más de 2,500 algoritmos de visión...
que incorpora el paquete es necesario obtener la versión estable desde el sitio oficial, en este caso la v.3.0.0. fue usada. La guía completa sobre la instalación se encuentra en los documentos de OpenCV (Mordvintsev, 2013).

4.3.3. Desarrollo de la Aplicación

La aplicación desarrollada con el lenguaje de programación Python incorpora código de librerías OpenCV específicas para el cálculo matemático y manejo de matrices multidimensionales de datos. Numpy, es usada en el procesamiento numérico; imutils, utilizada para algunas funciones de procesamiento de imágenes; así como el poderoso método cv2, usado para la manipulación de imágenes y obtención de salidas o vistas de usuario. La aplicación obtiene parámetros en valores de pixeles RGB (Red, Green, Blue o 3 canales) con la ayuda del comando template.shape[:2], generando un histograma que agrupa valores entre los rangos de 0 a 255 por pixel, siendo organizados en una matriz de 2 dimensiones. Estos datos son una representación numérica de la imagen modelo, que son promediados para obtener valores totales de pixeles en los 3 canales Red, Green y Blue. Este procedimiento de obtención de parámetros es aplicado con cada una de las copias o planillas a las cuales se les hace una reducción de escala.

La reducción a Multi-Escala de las copias de la imagen para las “planillas” se realiza de la siguiente manera: la imagen es clonada obteniendo una planilla digital que será usada para realizar reducciones en las dimensiones de la altura y ancho, la escala a reducir esta calculada en las líneas 19 y 20 del cuadro 1 con el código fuente del algoritmo y que a continuación se muestra.

La igualación entre la imagen modelo y la planilla es llevada a cabo con el comando cv2.matchTemplate que tiene un coeficiente de aproximación de bordes. Y esta función nos retorna coordenadas en donde hay una aproximación entre 2 imágenes, de tal manera que estos puntos de coordenadas de proximidad (x1,x2) y (y1,y2) son visualizados
marcando un recuadro de color rojo sobre el área de la planilla a escala procesada como se observa en la línea 50 del Cuadro 1.

**Cuadro 1. Código Fuente con Implementación del Algoritmo de Cálculo de Crecimiento en Multi-Escala.**

```python
1 #!/usr/bin/python
2 # -*- coding: utf-8 -*-
3 # Fecha: 2017-02-13
4 for imagePath in glob.glob(args["images"] + "/*.jpg"):
5     image = cv2.imread(imagePath)
6     gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
7     found = None
8     cantidad = cantidad + 1
9     print "=" * 70
10    print "Numero de Imagen Elegida para matching[, cantidad, "]" * 70
11    print "=" * 70
12     contador = 0
13     for scale in np.linspace(0.2, 1.0, 20)[:-1]:
14         resized = imutils.resize(gray, width = int(gray.shape[1] * scale))
15         r = gray.shape[1] / float(resized.shape[1])
16         if resized.shape[0] < tH or resized.shape[1] < tW:
17             break
18         edged = cv2.Canny(resized, 50, 200)
19         result = cv2.matchTemplate(edged, template, cv2.TM_CCOEFF)
20         (_, maxVal, _, maxLoc) = cv2.minMaxLoc(result)
21         if args.get("visualize", False):  
22             clone = np.dstack([edged, edged, edged])
23             cv2.rectangle(clone, (maxLoc[0], maxLoc[1]),
24                             (maxLoc[0] + tW, maxLoc[1] + tH), (0, 0, 255), 2)
25             contador = contador + 1
26             print "Reduccion[, contador, "]", ver_h, ver_w, ver_ch
27             cv2.imshow("Visualize", clone)
28             cv2.waitKey(0)
29     if found is None or maxVal > found[0]:
30         found = (maxVal, maxLoc, r)
31         (_, maxLoc, r) = found
32     (startX, startY) = (int(maxLoc[0] * r), int(maxLoc[1] * r))
33     (endX, endY) = (int((maxLoc[0] + tW) * r), int((maxLoc[1] + tH) * r))
34     pixelClone1 = startY
35     pixelClone2 = startX
36     aPromR = 0, aPromG = 0, aPromB = 0, tPromR = 0, tPromG = 0, tPromB = 0
37     for pixelClone1 in range(endY):
38         if pixelClone1 in range(endY):
39             sumR = sumG = sumB = 0, promR = 0, promG = 0, promB = 0
40             for pixelClone2 in range(endX):
41                 pixelTemplateClone = image[pixelClone1, pixelClone2]
42                 pxR = int(pixelTemplateClone[0:1])
43                 pxG = int(pixelTemplateClone[1:2])
44                 pxB = int(pixelTemplateClone[2:3])
45                 sumR = sumR + pxR
46                 sumG = sumG + pxG
47                 sumB = sumB + pxB
48                 cv2.rectangle(image, (startX, startY), (endX, endY), (0, 0, 255), 2)
49     cv2.imshow("Image", image)
50     cv2.waitKey(0)
```

~ 55 ~
4.3.4. Diseño Diagrama de Flujo del Algoritmo para la Estimación del Crecimiento

La fusión de todos estos elementos nos ha permitido diseñar un algoritmo que nos muestra el proceso que logra manipular imágenes digitales de plantas ornamentales estimando cambios en los histogramas de colores por medio de técnicas de igualación con múltiples escalas en imágenes.

El flujo de iteraciones durante la ejecución del algoritmo desarrollado para calcular el crecimiento de las plantas ornamentales se observa en la (fig. 4.16). Este algoritmo inicia con la obtención de un modelo, es decir, una imagen que será el objetivo a alcanzar con la técnica de igualación. Esta imagen debe ser limpia, sin fondo u objetos ajenos, conservando únicamente la fisonomía de la planta, en este caso una planta ornamental de la especie “Flor del Desierto”. El archivo digital de este modelo debe tener una extensión “.png” que admite la compresión sin pérdida, información de transparencia, y una gama de profundidades de color (Roelofs, 2003). El resto de las imágenes o plantillas de búsqueda no requieren de limpieza, son usadas como se capturan desde la cámara digital usando el formato de imagen digital “.jpg o .jpeg” que es capaz de desplegar millones de colores y maneja perfectamente la mezcla compleja de matices con una capacidad muy grande de compresión (Voutssás Márquez, 2006). El método de estimación de crecimiento está compuesto por un bucle que de manera gradual obtiene copias de la imagen plantilla que se irán reduciendo selectivamente en un número finito de ocasiones bajo una condición hasta lograr el tamaño en altura y ancho aproximado a la imagen modelo. Todas las imágenes son transformadas a escalas de grises reduciendo la gama de colores a lo más elemental, de ello se obtienen objetos puros, señalados por bordes que nos representan la fisonomía de las plantas ornamentales analizadas. Todas las condiciones se presentan para aplicar el algoritmo de identificación de bordes de la figura 4.16, así como el proceso de igualación que trabaja con la codificación cv2 para la manipulación de imágenes importada de las librerías OpenCV. Durante el proceso de reducción y obtención de las plantillas el algoritmo obtiene concentraciones de pixeles de 3 canales rojo, verde y azul, los cuales son promediando con la finalidad de llevar a
División de Estudios de Posgrado e Investigación
Procesamiento de Imágenes de Plantas Ornamentales Multi-Escala para Calcular su Crecimiento

cabo la delimitación de las áreas que coincidan con la búsqueda. Por último, se presentan
de los resultados se hace con una interfaz gráfica simple para el usuario.

**Figura 4.16. Diagrama de Flujo para la Medición del Crecimiento de Plantas Ornamentales.**
4.4. Verificación y Validación

4.4.1. Plan de Pruebas

4.4.1.1. Pruebas de Operación para Aplicación de Estimación del Crecimiento

La aplicación no requiere de una compilación adicional, lo cual facilita en un mínimo de pasos su funcionamiento.

Los siguientes pasos son los necesarios para su ejecución:

1. Abrir una ventana de comandos MS-DOS (cmd.exe) o una Terminal de Sistema en Linux.
2. Posicionarse en el directorio del proyecto “estimationUV4”.
3. Hacer la transferencia de las imágenes modelo en formato png del catálogo de plantas ornamentales y la captura de la planta por analizar en formato jpg.
4. Ejecutar el código de la aplicación con el comando que invoca al interprete Python.

4.4.1.2. Pruebas de Operación para Limpieza de Imagen Modelo en Formato .png Fondo Transparente

Las imágenes modelo en formato .png del catálogo de plantas ornamentales son procesadas con ayuda de un editor de imágenes para eliminar pixeles que obstruyan el esqueleto de la planta delimitado por los bordes en el follaje, tal como se observa en la (fig. 4.17).
4.4.1.3. Prueba de Usabilidad para la Ejecución Aplicación por etapas multi-escala con visualización.

La ejecución de la aplicación para la estimación del crecimiento puede ser manejada con el uso de un atributo que nos controla la visualización pausada e interactiva de reducción a escala de la imagen por analizar. El omitir “--visualize 1” efectúa un análisis automatizado rápido sin interacción de un usuario.

4.4.2. Plan de Mantenimiento

Para el algoritmo de etapas multi-escala de visualización manejamos parámetros de proximidad a los bordes que nos permiten obtener coincidencias entre los diversos conjuntos de colores RGB, pixeles y formas por los que se componen las imágenes analizadas. Por ello, es importante encontrar un balance entre los valores de las funciones linspace y Canny en ellas, afinándolos siguiendo el código mencionado con anterioridad en específico con las secciones (línea de código 13 - for scale in np.linspace(0.2, 1.0, 20)[::1]:), así como (línea de código 18 - edged = cv2.Canny(resized, 50, 200) ) del Cuadro1. Código Fuente con Implementación del Algoritmo de Estimación de Crecimiento en Multi-Escala.
5. Resultados Obtenidos

5.1. Ejecución del Algoritmo de Igualación por Reducción Multi-Escala.

La aplicación implementada con el algoritmo de igualación por reducción de Multi-Escala inicialmente trabaja con la preparación de la imagen modelo, realizando una transformación a escala de grises, obteniendo el contorno o fisonomía representada por pixeles en tonos claros, tal como se muestra en la (fig. 5.1).

![Figura 5.1. Base Modelo (Modelo) 200x200px.](image)

Posteriormente se obtiene parámetros en valores de pixeles RGB (Red, Green, Blue o 3 canales), se suman los valores de la matriz de 2 dimensiones y se les promedia. Esto se observan en la Tabla 5.1.

<table>
<thead>
<tr>
<th>DESCRIPCIÓN IMAGEN</th>
<th>PROMEDIO DE PIXELES EN IMAGEN (RED)</th>
<th>PROMEDIO DE PIXELES EN IMAGEN (GREEN)</th>
<th>PROMEDIO DE PIXELES EN IMAGEN (BLUE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Modelo = 200 x 200px</td>
<td>180.41</td>
<td>186.715</td>
<td>191.435</td>
</tr>
</tbody>
</table>

A continuación, con el algoritmo de igualación por reducción de Multi-Escala se obtienen copias de la imagen o “planillas” con dimensiones reducidas, de las cuales se busca obtener reducciones del tamaño en altura y ancho que sean aproximadas para evaluar la igualación, el resultado de este proceso se visualiza gráficamente con un recuadro en color rojo. El desarrollo del proceso de reducción del algoritmo de igualación por reducción de Multi-
Escala para calcular el crecimiento de las plantas ornamentales se observa en la (fig. 5.2). El momento en que se finaliza es cuando la reducción hecha excede las dimensiones de altura y ancho de la imagen modelo.

<table>
<thead>
<tr>
<th>Primera Reducción</th>
<th>Segunda Reducción</th>
<th>Tercera Reducción</th>
</tr>
</thead>
<tbody>
<tr>
<td>381x339px</td>
<td>364x324px</td>
<td>347x309px</td>
</tr>
<tr>
<td>Cuarta Reducción</td>
<td>Quinta Reducción</td>
<td>Sexta Reducción</td>
</tr>
<tr>
<td>330x294px</td>
<td>313x279px</td>
<td>296x264px</td>
</tr>
<tr>
<td>Séptima Reducción</td>
<td>Octava Reducción</td>
<td>Novena Reducción</td>
</tr>
<tr>
<td>279x249px</td>
<td>263x234px</td>
<td>246x219px</td>
</tr>
</tbody>
</table>

Figura 5.2. Reducciones realizadas por el algoritmo de igualación por reducción de Multi-Escala.
5.2. Presentación de Resultados

El algoritmo de igualación por reducción de Multi-Escala ofrece resultados positivos y culmina en el momento que la aplicación detecta que la reducción tiene las mismas dimensiones en altura y ancho que la imagen modelo. En la (fig 5.3) se aprecia este punto en donde se muestra gráficamente los resultados en la imagen de plantilla sin reducción a colores, delimitando con un recuadro rojo el área en donde se presenta una coincidencia positiva de igualación.

Figura 5.3. Obtención de la Igualación.
El algoritmo de igualación por reducción de Multi-Escala obtiene valores sobre las características de la imagen que son representados en pixeles. A manera de registro se obtienen los valores de cada una de las reducciones generadas. Se observa que la reducción de altura y la reducción de ancho efectuada por el algoritmo de multi-escala es en valores promedio y constantes, tal como se observa en la Tabla 5.2.

**Tabla 5.2. Valores obtenidos del algoritmo de igualación por reducción de Multi-Escala.**

<table>
<thead>
<tr>
<th>NOMBRE PLANTA</th>
<th>IMAGEN</th>
<th>NÚMERO DE REDUCCIÓN (R)</th>
<th>ALTURA (H)</th>
<th>ANCHO (W)</th>
<th>REDUCCIÓN DE ALTURA (PX)</th>
<th>REDUCCIÓN DE ANCHO (PX)</th>
<th>CANAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flor de Desierto</td>
<td>1</td>
<td>1</td>
<td>398</td>
<td>354</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>381</td>
<td>339</td>
<td>17</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>364</td>
<td>324</td>
<td>17</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>347</td>
<td>309</td>
<td>17</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5</td>
<td>330</td>
<td>294</td>
<td>17</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6</td>
<td>313</td>
<td>279</td>
<td>17</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7</td>
<td>296</td>
<td>264</td>
<td>17</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>8</td>
<td>279</td>
<td>249</td>
<td>17</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>9</td>
<td>263</td>
<td>234</td>
<td>16</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10</td>
<td>246</td>
<td>219</td>
<td>17</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11</td>
<td>229</td>
<td>204</td>
<td>17</td>
<td>15</td>
<td>3</td>
</tr>
</tbody>
</table>

De la imagen usada como plantilla para las reducciones se puede comprobar que el número de pixeles requeridos para llegar al tamaño de la imagen modelo fue de 169 pixeles en la altura y de 150 pixeles en el ancho, tal como se observa en la Tabla 5.3.

**Tabla 5.3. Simetría en los valores procesados en el algoritmo de igualación por reducción de Multi-Escala.**

<table>
<thead>
<tr>
<th>DIFERENCIA ALTURA (PX)</th>
<th>SUMA DE LA REDUCCIÓN DE ALTURA (PX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 - H11 = 169</td>
<td>H1 - H11 = 169</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIFERENCIA ANCHO (PX)</th>
<th>SUMA DE LA REDUCCIÓN DE ANCHO (PX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1 - W11 = 150</td>
<td>W1 - W11 = 150</td>
</tr>
</tbody>
</table>

~ 63 ~
5.3. Obtención de Porcentaje de Crecimiento

Al finalizar el procesamiento del algoritmo de igualación por reducción de Multi-Escala se obtienen parámetros en valores de píxeles RGB (Red, Green, Blue o 3 canales) de ambas imágenes, éstos son promediados para obtener un porcentaje que nos indica cambios entre ambas imágenes, estimando así un crecimiento en la planta, tal como se observa en la Tabla 5.4.

Tabla 5.4. Igualación de la Concentración de Valores de los Tres Canales RGB para las Imágenes Modelo – Original.

<table>
<thead>
<tr>
<th>DESCRIPCIÓN IMÁGENE</th>
<th>PROMEDIO DE PIXELES EN IMÁGEN (RED)</th>
<th>PROMEDIO DE PIXELES EN IMÁGEN (GREEN)</th>
<th>PROMEDIO DE PIXELES EN IMÁGEN (BLUE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Template (Modelo) = 200 x 200px</td>
<td>180.41</td>
<td>186.715</td>
<td>191.435</td>
</tr>
<tr>
<td>Imagen Original = 398 x 354 px</td>
<td>181.7841727</td>
<td>186.1726619</td>
<td>187.9388489</td>
</tr>
<tr>
<td>Diferencia</td>
<td>1.3741727</td>
<td>-0.5423381</td>
<td>-3.4961511</td>
</tr>
<tr>
<td>Porcentaje de Píxeles</td>
<td>1.32%</td>
<td>-3.43%</td>
<td>-0.54%</td>
</tr>
</tbody>
</table>

La prueba implicó el procesar la misma la misma variedad de planta en otros tamaños con dimensiones mayores obtenidas de la misma planta durante intervalos de 3 semanas, de estas se obtuvieron promedios de los tres canales de color similares, tal como se observa en la Tabla 5.5.

Tabla 5.5. Evaluación de otras capturas con algoritmo de igualación con la concentración de Valores de los tres canales RGB para las imágenes modelo – original en varias dimensiones.

<table>
<thead>
<tr>
<th>DESCRIPCIÓN IMÁGENE</th>
<th>PROMEDIO DE PIXELES EN IMÁGEN (RED)</th>
<th>PROMEDIO DE PIXELES EN IMÁGEN (GREEN)</th>
<th>PROMEDIO DE PIXELES EN IMÁGEN (BLUE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Template (Modelo) = 200 x 200px</td>
<td>180.41</td>
<td>186.715</td>
<td>191.435</td>
</tr>
<tr>
<td>Imagen Original = 398 x 354 px</td>
<td>181.7841727</td>
<td>186.1726619</td>
<td>187.9388489</td>
</tr>
<tr>
<td>Imagen Original = 552 x 484 px</td>
<td>181.4360313</td>
<td>185.9033943</td>
<td>187.6396867</td>
</tr>
<tr>
<td>Imagen Original = 700 x 684 px</td>
<td>177.8721649</td>
<td>183.0948454</td>
<td>185.0123711</td>
</tr>
</tbody>
</table>

~ 64 ~
En la (fig. 5.4) se observa que los valores obtenidos sobre las dimensiones de los tres canales siguen una tendencia lineal hacia el punto de igualación, donde las dimensiones de altura y ancho de las plantillas con reducciones son iguales a las del modelo.

6. Conclusiones y Recomendaciones

La estimación del crecimiento de las plantas permite comparar las condiciones para la producción de plantas haciendo un comparativo entre los nutrientes aplicados, la irrigación, parámetros físicos como: la luminosidad, conductividad, temperatura, humedad, pH y otros factores ambientales que intervienen en el crecimiento de las plantas ornamentales; que nos lleve a un ciclo de mejora continua con la acertada toma de decisiones que incrementen la productividad y competitividad de los viveristas.
Con respecto a tecnologías y métodos empleados por trabajos relacionados con algoritmos para la identificación de plantas por su taxonomía y alimentar una base de datos vectoriales; se puede resaltar que esta propuesta de investigación aumenta la autonomía en la búsqueda de patrones teniendo resultados más certeros, además de implementar el emparejamiento de pixeles en imágenes con escalas y dimensiones de altura y ancho diferentes.

De este trabajo se concluye que el algoritmo de reducción de imágenes a multi-escala es una herramienta que determina las similitudes entre dos imágenes haciendo uso de hardware con especificaciones y lenguajes de programación de fácil acceso. Con su uso, es posible determinar el crecimiento de una planta al analizar los pixeles que la conforman; agregando que la aplicación del algoritmo puede ser migrada al análisis de otros objetos.

El algoritmo usa la escala de reducción y un algoritmo de reducción de bordes con especificaciones promedio, y aún puede ser calibrado con una mayor aproximación para dar mejores resultados.

Para continuar con esta investigación en lo futuro se recomienda implementar esta tecnología en gadgets con autonomía de procesamiento en una Raspberry Pi para buscar efectuar la tarea de estimación de crecimiento en tiempo real. Así como implementar una regla virtual para estimar el crecimiento de las imágenes de las plantas ornamentales con una representación gráfica en escala métrica.
Referencias Bibliográficas


SAGA University, O. P. (01 de 08 de 2015). OPTiM. Recuperado el 20 de 07 de 2016, de https://www.optim.co.jp/it-industry/agriculture/case-study/tpa/